The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge--Amp\`ere type
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 179-192

Voir la notice de l'article provenant de la source Math-Net.Ru

A priori boundedness of the solution of the Dirichlet problem is proved for the equation $F(m;u)=f(x,u,u_x)$, where $F(m;u)$ is the sum of all principal minors of order $m$ in the Hessian $\det(u_{xx})$. The boundedness in question is relative to the $C^2(\Omega)$-norm and is demonstrated by combining the methods of integral inequalities and barrier functions. Bibliography: 7 titles.
@article{SM_1981_40_2_a3,
     author = {N. M. Ivochkina},
     title = {The integral method of barrier functions and the {Dirichlet} problem for equations with operators of {Monge--Amp\`ere} type},
     journal = {Sbornik. Mathematics},
     pages = {179--192},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a3/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge--Amp\`ere type
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 179
EP  - 192
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a3/
LA  - en
ID  - SM_1981_40_2_a3
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge--Amp\`ere type
%J Sbornik. Mathematics
%D 1981
%P 179-192
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_40_2_a3/
%G en
%F SM_1981_40_2_a3
N. M. Ivochkina. The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge--Amp\`ere type. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 179-192. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a3/