The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge--Amp\`ere type
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 179-192
Voir la notice de l'article provenant de la source Math-Net.Ru
A priori boundedness of the solution of the Dirichlet problem is proved for the equation $F(m;u)=f(x,u,u_x)$, where $F(m;u)$ is the sum of all principal minors of order $m$ in the Hessian $\det(u_{xx})$. The boundedness in question is relative to the $C^2(\Omega)$-norm and is demonstrated by combining the methods of integral inequalities and barrier functions.
Bibliography: 7 titles.
@article{SM_1981_40_2_a3,
author = {N. M. Ivochkina},
title = {The integral method of barrier functions and the {Dirichlet} problem for equations with operators of {Monge--Amp\`ere} type},
journal = {Sbornik. Mathematics},
pages = {179--192},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a3/}
}
TY - JOUR AU - N. M. Ivochkina TI - The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge--Amp\`ere type JO - Sbornik. Mathematics PY - 1981 SP - 179 EP - 192 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a3/ LA - en ID - SM_1981_40_2_a3 ER -
%0 Journal Article %A N. M. Ivochkina %T The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge--Amp\`ere type %J Sbornik. Mathematics %D 1981 %P 179-192 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1981_40_2_a3/ %G en %F SM_1981_40_2_a3
N. M. Ivochkina. The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge--Amp\`ere type. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 179-192. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a3/