On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 157-178

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author proves a theorem on the existence of a classical solution of the Stefan problem for the equation $$ D_t\theta=\sum^n_{i,j=1}D_i[a_{ij}(x,t,\theta)D_j\theta]+f(x,t,\theta,D\theta) $$ on a small time interval. The solution is obtained as a limit as $\varepsilon\to0$ of solutions of auxiliary “regularized” problems. Estimates for solutions of the auxiliary problems are established that do not depend on $\varepsilon$. These estimates permit one to say something about the compactness of the family of solutions in the space $C^{2,1}$. Bibliography: 13 titles.
@article{SM_1981_40_2_a2,
     author = {A. M. Meirmanov},
     title = {On the classical solution of the multidimensional {Stefan} problem for quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {157--178},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/}
}
TY  - JOUR
AU  - A. M. Meirmanov
TI  - On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 157
EP  - 178
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/
LA  - en
ID  - SM_1981_40_2_a2
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%T On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
%J Sbornik. Mathematics
%D 1981
%P 157-178
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/
%G en
%F SM_1981_40_2_a2
A. M. Meirmanov. On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 157-178. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/