On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 157-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author proves a theorem on the existence of a classical solution of the Stefan problem for the equation $$ D_t\theta=\sum^n_{i,j=1}D_i[a_{ij}(x,t,\theta)D_j\theta]+f(x,t,\theta,D\theta) $$ on a small time interval. The solution is obtained as a limit as $\varepsilon\to0$ of solutions of auxiliary “regularized” problems. Estimates for solutions of the auxiliary problems are established that do not depend on $\varepsilon$. These estimates permit one to say something about the compactness of the family of solutions in the space $C^{2,1}$. Bibliography: 13 titles.
@article{SM_1981_40_2_a2,
     author = {A. M. Meirmanov},
     title = {On the classical solution of the multidimensional {Stefan} problem for quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {157--178},
     year = {1981},
     volume = {40},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/}
}
TY  - JOUR
AU  - A. M. Meirmanov
TI  - On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 157
EP  - 178
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/
LA  - en
ID  - SM_1981_40_2_a2
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%T On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
%J Sbornik. Mathematics
%D 1981
%P 157-178
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/
%G en
%F SM_1981_40_2_a2
A. M. Meirmanov. On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 157-178. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/

[1] A. Fridman, Uravneniya parabolicheskogo tipa, izd-vo “Mir”, Moskva, 1968

[2] J. R. Cannon, C. D. Hill, “Existence, uniqueness, stability and monotone dependence in a Stefan problem for the heat equation”, J. Math. Mech., 17:1 (1967) | MR

[3] C. D. Hill, D. B. Kotlow, “Classical solution in the large of the two-phase free boundary problem”, J. Arch. Rat. Mech. Anal., 45 (1972) | MR | Zbl

[4] W. T. Kyner, “An existence and uniqueness for a nonlinear Stefan problem”, J. Math. Mech., 8:4 (1959) | MR | Zbl

[5] P. D. Bachelis, V. G. Melamed, “O reshenii kvazilineinoi dvukhfaznoi zadachi Stefana metodom pryamykh pri slabykh ogranicheniyakh na vkhodnye dannye zadachi”, Zh. vychisl. matem. i matem. fiz., 12:3 (1972) | Zbl

[6] A. M. Meirmanov, “Mnogofaznaya zadacha Stefana dlya kvazilineinykh parabolicheskikh uravnenii”, Dinamika sploshnoi sredy, vyp. 13, Novosibirsk, 1973

[7] O. A. Oleinik, “Ob odnom metode resheniya obschei zadachi Stefana”, DAN SSSR, 135:5 (1960)

[8] A. Friedman, D. Kinderlehrer, “A one Phase Stefan Problem”, Indiana Univ. Math. J., 24:11 (1975) | DOI | MR

[9] B. M. Budak, M. Z. Moskal, “O klassicheskom reshenii mnogomernoi mnogofrontovoi zadachi Stefana v oblasti s kusochno-gladkoi granitsei”, DAN SSSR, 191:4 (1970) | MR | Zbl

[10] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, izd-vo “Nauka”, Moskva, 1967

[11] K. Miranda, Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, Moskva, 1957

[12] P. E. Sobolevskii, “O lokalnoi i nelokalnoi teoremakh suschestvovaniya dlya nelineinykh parabolicheskikh uravnenii”, DAN SSSR, 136:2 (1961) | Zbl

[13] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, izd-vo “Nauka”, Moskva, 1977 | MR