On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 157-178
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the author proves a theorem on the existence of a classical solution of the Stefan problem for the equation
$$
D_t\theta=\sum^n_{i,j=1}D_i[a_{ij}(x,t,\theta)D_j\theta]+f(x,t,\theta,D\theta)
$$
on a small time interval.
The solution is obtained as a limit as $\varepsilon\to0$ of solutions of auxiliary “regularized” problems. Estimates for solutions of the auxiliary problems are established that do not depend on $\varepsilon$. These estimates permit one to say something about the compactness of the family of solutions in the space $C^{2,1}$.
Bibliography: 13 titles.
@article{SM_1981_40_2_a2,
author = {A. M. Meirmanov},
title = {On the classical solution of the multidimensional {Stefan} problem for quasilinear parabolic equations},
journal = {Sbornik. Mathematics},
pages = {157--178},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/}
}
TY - JOUR AU - A. M. Meirmanov TI - On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations JO - Sbornik. Mathematics PY - 1981 SP - 157 EP - 178 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/ LA - en ID - SM_1981_40_2_a2 ER -
A. M. Meirmanov. On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 157-178. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a2/