Invariant measures on semigroups and imbedding topological semigroups in topological groups
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 277-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the case of topological semigroups that are cancellative and right reversible is considered. It is shown (Theorem 1) that the existence in such a semigroup of a left invariant measure satisfying certain conditions is equivalent to the imbeddability of some open ideal of the given semigroup as an open subsemigroup in a locally compact group of left fractions. Conditions for imbedding topological semigroups in locally compact groups are considered in measure-theoretic terms. Bibliography: 8 titles.
@article{SM_1981_40_2_a10,
     author = {V. V. Mukhin},
     title = {Invariant measures on semigroups and imbedding topological semigroups in topological groups},
     journal = {Sbornik. Mathematics},
     pages = {277--284},
     year = {1981},
     volume = {40},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a10/}
}
TY  - JOUR
AU  - V. V. Mukhin
TI  - Invariant measures on semigroups and imbedding topological semigroups in topological groups
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 277
EP  - 284
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_2_a10/
LA  - en
ID  - SM_1981_40_2_a10
ER  - 
%0 Journal Article
%A V. V. Mukhin
%T Invariant measures on semigroups and imbedding topological semigroups in topological groups
%J Sbornik. Mathematics
%D 1981
%P 277-284
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_40_2_a10/
%G en
%F SM_1981_40_2_a10
V. V. Mukhin. Invariant measures on semigroups and imbedding topological semigroups in topological groups. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 277-284. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a10/

[1] J. H. Williamson, “Harmonic analysis on semigroups”, J. London Math. Soc., 42:1 (1967), 1–41 | DOI | MR | Zbl

[2] A. Paterson, “Invariant measure semigroups”, Proc. London Math. Soc., 35:2 (1977), 313–332 | DOI | MR | Zbl

[3] R. Rigelhof, “Invariant measures on lokally compact semigroup”, Proc. Amer. Math. Soc., 28:1 (1971), 173–176 | DOI | MR | Zbl

[4] C. Gowrisankaran, “Semigroup with invariant Radon measures”, Proc. Amer. Math. Soc., 38:2 (1973), 400–404 | DOI | MR | Zbl

[5] A. B. Paalman–de Miranda, “Topological semigroups”, Math. Centre Tracts II, Math. Centrum, Amsterdam, 1970

[6] V. V. Mukhin, “O vlozhenii topologicheskikh polugrupp v topologicheskie gruppy”, VII vsesoyuznaya topologicheskaya konferentsiya, tezisy dokladov i soobschenii, 1977, 131

[7] P. Khalmosh, Teoriya mery, IL, Moskva, 1953

[8] N. Burbaki, Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi, gruppy i prostranstva, izd-vo “Nauka”, Moskva, 1969 | MR