On the convergence of Pad\'e approximants in classes of holomorphic functions
Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 149-155
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is proved that if, for any function $f$ holomorphic in a domain $D\subset\overline{\mathbf C}$ ($\infty\in D$), the sequence $\{\pi_n(f)\}_{n\in\mathbf N}$ of its diagonal Padé approximants (corresponding to the point $z=\infty$) converges to $f$ in measure in $D$, then $\operatorname{cap}(\overline{\mathbf C}\setminus D)=0$.
Bibliography: 8 titles.
@article{SM_1981_40_2_a1,
author = {E. A. Rakhmanov},
title = {On the convergence of {Pad\'e} approximants in classes of holomorphic functions},
journal = {Sbornik. Mathematics},
pages = {149--155},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_2_a1/}
}
E. A. Rakhmanov. On the convergence of Pad\'e approximants in classes of holomorphic functions. Sbornik. Mathematics, Tome 40 (1981) no. 2, pp. 149-155. http://geodesic.mathdoc.fr/item/SM_1981_40_2_a1/