Spectral synthesis on systems of convex domains. Extension of the synthesis
Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 87-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of homogeneous convolution equations is considered in convex Domains $G_1,\dots, G_q\subset G$. Earlier (Mat. Sb. (N. S.) 111(153) (1980), 3–41) the author studied the following problem of spectral synthesis: under what conditions can every solution $f=(f_1,\dots,f_q)$ of such a system be approximated by linear combinations of elementary solutions inside $G_1,\dots,G_q$? In the present paper the following problem of the extension of the synthesis is considered: under what conditions does a solution $f=(f_1,\dots,f_q)$ admit approximation not only in $G_1,\dots,G_q$ but also in larger domains $G'_1\supset G_1$, $\dots$, $G'_q\supset G_q$ which are contained in the domains of existence of the components $f_1,\dots,f_q$? Bibliography: 8 titles.
@article{SM_1981_40_1_a4,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Spectral synthesis on systems of convex domains. {Extension} of the synthesis},
     journal = {Sbornik. Mathematics},
     pages = {87--105},
     year = {1981},
     volume = {40},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_1_a4/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Spectral synthesis on systems of convex domains. Extension of the synthesis
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 87
EP  - 105
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_1_a4/
LA  - en
ID  - SM_1981_40_1_a4
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Spectral synthesis on systems of convex domains. Extension of the synthesis
%J Sbornik. Mathematics
%D 1981
%P 87-105
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_40_1_a4/
%G en
%F SM_1981_40_1_a4
I. F. Krasichkov-Ternovskii. Spectral synthesis on systems of convex domains. Extension of the synthesis. Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 87-105. http://geodesic.mathdoc.fr/item/SM_1981_40_1_a4/

[1] I. F. Krasichkov-Ternovskii, “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87(129) (1972), 459–487

[2] I. F. Krasichkov-Ternovskii, “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88(130) (1972), 3–30

[3] I. F. Krasichkov-Ternovskii, “Invariantnye podprostranstva analiticheskikh funktsii. III. O rasprostranenii spektralnogo sinteza”, Matem. sb., 88(130) (1972), 331–352

[4] I. F. Krasichkov-Ternovskii, “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi. I”, Izv. AN SSSR, seriya matem., 43 (1979), 44–66 | MR

[5] I. F. Krasichkov-Ternovskii, “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi. II”, Izv. AN SSSR, seriya matem., 43 (1979), 309–341 | MR

[6] I. F. Krasichkov-Ternovskii, “Spektralnyi sintez analiticheskikh funktsii na sistemakh vypuklykh oblastei”, Matem. sb., 111(153) (1980), 3–41 | MR

[7] I. F. Krasichkov-Ternovskii, “Invariantnye podprostranstva analiticheskikh funktsii. Koeffitsienty Dirikhle”, Funkts. analiz, 7:4 (1973), 38–43 | MR

[8] A. F. Leontev, “Ob odnom svoistve edinstvennosti”, Matem. sb., 72(144) (1967), 237–249 | MR