@article{SM_1981_40_1_a1,
author = {L. I. Kamynin and B. N. Khimchenko},
title = {On the strong extremum principle for {a~D-}$(\Pi,\Omega)$-elliptically connected operator of second order},
journal = {Sbornik. Mathematics},
pages = {21--50},
year = {1981},
volume = {40},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/}
}
TY - JOUR AU - L. I. Kamynin AU - B. N. Khimchenko TI - On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order JO - Sbornik. Mathematics PY - 1981 SP - 21 EP - 50 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/ LA - en ID - SM_1981_40_1_a1 ER -
L. I. Kamynin; B. N. Khimchenko. On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order. Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 21-50. http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/
[1] E. Hopf, “Elementare Bemerkungen über die Losungen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Types”, Preus. Akad. Wiss. Sitzungber., 19 (1927), 147–152
[2] L. Nirenberg, “A strong maximum principle for parobolic equations”, Comm. Pure and Appl. Math., 6:2 (1953), 167–177 | DOI | MR | Zbl
[3] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. I”, Izv. VUZov, Matematika, 1958, no. 5, 126–157 | MR | Zbl
[4] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. II”, Izv. VUZov, Matematika, 1959, no. 3, 3–12 | MR | Zbl
[5] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. III”, Izv. VUZov, Matematika, 1959, no. 5, 16–32 | MR | Zbl
[6] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. IV”, Izv. VUZov, Matematika, 1960, no. 3, 3–15 | MR | Zbl
[7] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. V”, Izv. VUZov, Matematika, 1960, no. 5, 16–26 | MR | Zbl
[8] J. M. Bony, “Sur la propagation des maximums et l'unicitè du problème de Cauchy pour les opérateurs elliptiques dégénérés du second ordre”, C. r. Acad. Sci., 266:15 (1968), A763–A765 | MR
[9] J. M. Bony, “Problème de Dirichlet et inégalité de Harnack pour une classe d'opérateurs elliptiques dégénérés du second order”, C. r. Acad. Sci., 266:16 (1968), 830–A833 | MR
[10] J. M. Bony, “Principe du maximum, inégalité de Harnack et unicitè du problème de Cauchy pour les opérateures elliptiques dégénérés”, Ann. Inst. Fourier, 19:1 (1969), 277–304 | MR | Zbl
[11] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchenye zapiski ped. in-ta im. Libknekhta, seriya fiz.-matem., 2 (1938), 83–94
[12] L. I. Kamynin, B. N. Khimchenko, “O strogom printsipe ekstremuma dlya slaboellipticheski svyaznogo operatora $2$-go poryadka”, ZhVMiMF, 19:1 (1979), 129–142 | MR | Zbl
[13] L. I. Kamynin, B. N. Khimchenko, “K issledovaniyam o printsipe maksimuma”, DAN SSSR, 240:4 (1978), 774–777 | MR | Zbl
[14] L. I. Kamynin, B. N. Khimchenko, “O teoremakh tipa Zhiro dlya ellipticheskogo operatora $2$-go poryadka, slabo vyrozhdayuschegosya vblizi granitsy”, DAN SSSR, 224:4 (1975), 752–755 | MR | Zbl
[15] L. I. Kamynin, B. N. Khimchenko, “Teoremy tipa Zhiro dlya uravneniya 2-go poryadka so slabo vyrozhdayuscheisya neotritsatelnoi kharakteristicheskoi chastyu”, Sib. matem. zh., XVIII:1 (1977), 103–121 | MR
[16] S. M. Nikolskii, Kurs matematicheskogo analiza, t. I, izd-vo “Nauka”, Moskva, 1973 | MR
[17] S. Lefshets, Geometricheskaya teoriya differentsialnykh uravnenii, IL, Moskva, 1961
[18] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, Moskva–Leningrad, 1949
[19] L. I. Kamynin, B. N. Khimchenko, “O strogom printsipe ekstremuma v ploskoi oblasti”, Sib. matem. zh., XX:2 (1979), 278–292 | MR