On the strong extremum principle for a~D-$(\Pi,\Omega)$-elliptically connected operator of second order
Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 21-50
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the strong extremum principle is proved for a certain new class of second order operators with nonnegative characteristic form, without requiring the smoothness of their coefficients, which is essential in the converse of Rashevskii's theorem on completely nonholonomic systems.
Bibliography: 19 titles.
@article{SM_1981_40_1_a1,
author = {L. I. Kamynin and B. N. Khimchenko},
title = {On the strong extremum principle for {a~D-}$(\Pi,\Omega)$-elliptically connected operator of second order},
journal = {Sbornik. Mathematics},
pages = {21--50},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/}
}
TY - JOUR AU - L. I. Kamynin AU - B. N. Khimchenko TI - On the strong extremum principle for a~D-$(\Pi,\Omega)$-elliptically connected operator of second order JO - Sbornik. Mathematics PY - 1981 SP - 21 EP - 50 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/ LA - en ID - SM_1981_40_1_a1 ER -
%0 Journal Article %A L. I. Kamynin %A B. N. Khimchenko %T On the strong extremum principle for a~D-$(\Pi,\Omega)$-elliptically connected operator of second order %J Sbornik. Mathematics %D 1981 %P 21-50 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/ %G en %F SM_1981_40_1_a1
L. I. Kamynin; B. N. Khimchenko. On the strong extremum principle for a~D-$(\Pi,\Omega)$-elliptically connected operator of second order. Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 21-50. http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/