On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order
Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 21-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the strong extremum principle is proved for a certain new class of second order operators with nonnegative characteristic form, without requiring the smoothness of their coefficients, which is essential in the converse of Rashevskii's theorem on completely nonholonomic systems. Bibliography: 19 titles.
@article{SM_1981_40_1_a1,
     author = {L. I. Kamynin and B. N. Khimchenko},
     title = {On the strong extremum principle for {a~D-}$(\Pi,\Omega)$-elliptically connected operator of second order},
     journal = {Sbornik. Mathematics},
     pages = {21--50},
     year = {1981},
     volume = {40},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/}
}
TY  - JOUR
AU  - L. I. Kamynin
AU  - B. N. Khimchenko
TI  - On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 21
EP  - 50
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/
LA  - en
ID  - SM_1981_40_1_a1
ER  - 
%0 Journal Article
%A L. I. Kamynin
%A B. N. Khimchenko
%T On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order
%J Sbornik. Mathematics
%D 1981
%P 21-50
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/
%G en
%F SM_1981_40_1_a1
L. I. Kamynin; B. N. Khimchenko. On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order. Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 21-50. http://geodesic.mathdoc.fr/item/SM_1981_40_1_a1/

[1] E. Hopf, “Elementare Bemerkungen über die Losungen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Types”, Preus. Akad. Wiss. Sitzungber., 19 (1927), 147–152

[2] L. Nirenberg, “A strong maximum principle for parobolic equations”, Comm. Pure and Appl. Math., 6:2 (1953), 167–177 | DOI | MR | Zbl

[3] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. I”, Izv. VUZov, Matematika, 1958, no. 5, 126–157 | MR | Zbl

[4] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. II”, Izv. VUZov, Matematika, 1959, no. 3, 3–12 | MR | Zbl

[5] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. III”, Izv. VUZov, Matematika, 1959, no. 5, 16–32 | MR | Zbl

[6] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. IV”, Izv. VUZov, Matematika, 1960, no. 3, 3–15 | MR | Zbl

[7] A. D. Aleksandrov, “Issledovanie o printsipe maksimuma. V”, Izv. VUZov, Matematika, 1960, no. 5, 16–26 | MR | Zbl

[8] J. M. Bony, “Sur la propagation des maximums et l'unicitè du problème de Cauchy pour les opérateurs elliptiques dégénérés du second ordre”, C. r. Acad. Sci., 266:15 (1968), A763–A765 | MR

[9] J. M. Bony, “Problème de Dirichlet et inégalité de Harnack pour une classe d'opérateurs elliptiques dégénérés du second order”, C. r. Acad. Sci., 266:16 (1968), 830–A833 | MR

[10] J. M. Bony, “Principe du maximum, inégalité de Harnack et unicitè du problème de Cauchy pour les opérateures elliptiques dégénérés”, Ann. Inst. Fourier, 19:1 (1969), 277–304 | MR | Zbl

[11] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchenye zapiski ped. in-ta im. Libknekhta, seriya fiz.-matem., 2 (1938), 83–94

[12] L. I. Kamynin, B. N. Khimchenko, “O strogom printsipe ekstremuma dlya slaboellipticheski svyaznogo operatora $2$-go poryadka”, ZhVMiMF, 19:1 (1979), 129–142 | MR | Zbl

[13] L. I. Kamynin, B. N. Khimchenko, “K issledovaniyam o printsipe maksimuma”, DAN SSSR, 240:4 (1978), 774–777 | MR | Zbl

[14] L. I. Kamynin, B. N. Khimchenko, “O teoremakh tipa Zhiro dlya ellipticheskogo operatora $2$-go poryadka, slabo vyrozhdayuschegosya vblizi granitsy”, DAN SSSR, 224:4 (1975), 752–755 | MR | Zbl

[15] L. I. Kamynin, B. N. Khimchenko, “Teoremy tipa Zhiro dlya uravneniya 2-go poryadka so slabo vyrozhdayuscheisya neotritsatelnoi kharakteristicheskoi chastyu”, Sib. matem. zh., XVIII:1 (1977), 103–121 | MR

[16] S. M. Nikolskii, Kurs matematicheskogo analiza, t. I, izd-vo “Nauka”, Moskva, 1973 | MR

[17] S. Lefshets, Geometricheskaya teoriya differentsialnykh uravnenii, IL, Moskva, 1961

[18] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, Moskva–Leningrad, 1949

[19] L. I. Kamynin, B. N. Khimchenko, “O strogom printsipe ekstremuma v ploskoi oblasti”, Sib. matem. zh., XX:2 (1979), 278–292 | MR