Boundary properties of an integral of Cauchy–Leray type in piecewise smooth domains in $\mathbf C^n$, and some applications
Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 1-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article studies the boundary properties of the Cauchy–Leray type integral for Hölder functions on a domain with piecewise smooth boundary in $\mathbf C^n$. The results are used to obtain an analytic representation of Hölder CR-functions. Bibliography: 8 titles.
@article{SM_1981_40_1_a0,
     author = {R. A. Airapetyan},
     title = {Boundary properties of an integral of {Cauchy{\textendash}Leray} type in piecewise smooth domains in~$\mathbf C^n$, and some applications},
     journal = {Sbornik. Mathematics},
     pages = {1--20},
     year = {1981},
     volume = {40},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_40_1_a0/}
}
TY  - JOUR
AU  - R. A. Airapetyan
TI  - Boundary properties of an integral of Cauchy–Leray type in piecewise smooth domains in $\mathbf C^n$, and some applications
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 1
EP  - 20
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_40_1_a0/
LA  - en
ID  - SM_1981_40_1_a0
ER  - 
%0 Journal Article
%A R. A. Airapetyan
%T Boundary properties of an integral of Cauchy–Leray type in piecewise smooth domains in $\mathbf C^n$, and some applications
%J Sbornik. Mathematics
%D 1981
%P 1-20
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_40_1_a0/
%G en
%F SM_1981_40_1_a0
R. A. Airapetyan. Boundary properties of an integral of Cauchy–Leray type in piecewise smooth domains in $\mathbf C^n$, and some applications. Sbornik. Mathematics, Tome 40 (1981) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/SM_1981_40_1_a0/

[1] P. Ahern, R. Schneider, “Holomorpic Lipschitz functions in pseudoconvex domains”, Amer. J. Math., 101:3 (1979), 543–565 | DOI | MR | Zbl

[2] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. I. II”, Ann. Scuola Norm. Super. Pisa, 26:2 (1972), 325–363 | MR | Zbl

[3] F. R. Harvey, R. O. Wells, “Holomorphic approximation and hyperfunction theory on a $C^l$ totally real submanifold of a complex manifold”, Math. Ann., 197:4 (1972), 287–318 | DOI | MR | Zbl

[4] N. Kersman, E. M. Stein, “The Szego kernel in terms of Cauchy–Fantappie kernels”, Duke Math. J., 45:2 (1978), 197–221 | DOI | MR

[5] A. Martineau, “Distributions et valeurs au bord des fonctions holomorphes”, Proc. of the Int. Summer Institute, Lisbon, 1964 | MR

[6] R. Nirenberg, “On the H. Lewy extension phenomenon”, Trans. Amer. Math. Soc., 168 (1972), 337–356 | DOI | MR | Zbl

[7] D. H. Phong and E. M. Stein, “Estimates for the Bergman and Szegö projections on szongly pseudoconvex domains”, Duke Math. J., 44 (1977), 695–704 | DOI | MR | Zbl

[8] R. M. Range, Y. T. Siu, “Uniform estimates for the $\bar\partial$-equation on domains with piecewise smooth strictly pseudoconvex bundaries”, Math. Ann., 206 (1973), 325–354 | DOI | MR | Zbl

[9] P. A. Airapetyan, Granichnye svoistva integrala tipa Koshi–Lere v kusochno gladkikh oblastyakh v $\mathbf C^n$, DAN AN SSSR, 246, no. 4, 1979 | MR | Zbl

[10] B. Malgranzh, Idealy differentsiruemykh funktsii, izd-vo “Mir”, Moskva, 1968

[11] P. L. Polyakov, “Banakhovskie kogomologii kusochno strogo psevdovypuklykh oblastei”, Matem. sb., 88(130) (1972), 239–255

[12] I. I. Privalov, “Ob integralakh tipa Koshi”, DAN AN SSSR, 23:9 (1939), 859–862

[13] G. M. Khenkin, “Integralnoe predstavlenie funktsii v strogo psevdovypuklykh oblastyakh i nekotorye prilozheniya”, Matem. sb., 78(120) (1969), 611–632 | Zbl

[14] G. M. Khenkin, “Analiticheskoe predstavlenie dlya CR-funktsii na mnogoobraziyakh korazmernosti 2 v $\mathbf C^n$”, DAN SSSR, 250:2 (1980), 300–304 | MR

[15] G. M. Khenkin, E. M. Chirka, “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki, 4, VINITI, Moskva, 1975, 13–142

[16] E. M. Chirka, “Analiticheskoe predstavlenie CR-funktsii”, Matem. sb., 98(140) (1975), 591–623 | Zbl