Galois cohomology and some questions of the theory of algorithms
Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 519-545 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be an arbitrary linear algebraic group defined over an algebraic number field $K$, let $R$ be its solvable radical, let $S=G/R$, and let $\widetilde S$ be the simply connected covering group of $S$. The basic result of the paper asserts that whether any two Galois 1-cocycles in $Z_1(K,G)$ are cohomologous is algorithmically verifiable, if the “Hasse principle” holds for $\widetilde S$. Bibliography: 13 titles.
@article{SM_1981_39_4_a5,
     author = {R. A. Sarkisyan},
     title = {Galois cohomology and some questions of the theory of algorithms},
     journal = {Sbornik. Mathematics},
     pages = {519--545},
     year = {1981},
     volume = {39},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_4_a5/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
TI  - Galois cohomology and some questions of the theory of algorithms
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 519
EP  - 545
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_4_a5/
LA  - en
ID  - SM_1981_39_4_a5
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%T Galois cohomology and some questions of the theory of algorithms
%J Sbornik. Mathematics
%D 1981
%P 519-545
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1981_39_4_a5/
%G en
%F SM_1981_39_4_a5
R. A. Sarkisyan. Galois cohomology and some questions of the theory of algorithms. Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 519-545. http://geodesic.mathdoc.fr/item/SM_1981_39_4_a5/

[1] Zh. P. Serr, Kogomologii Galua, izd-vo “Mir”, Moskva, 1968 | MR

[2] A. Borel, Lineinye algebraicheskie gruppy, izd-vo “Mir”, Moskva, 1972 | MR

[3] A. Borel, Zh. Tits, “Reduktivnye gruppy”, Matematika, 11:1 (1967), 43–111; 11:2, 3–31

[4] Yu. I. Merzlyakov, Ratsionalnye gruppy, izd-vo “Nauka”, Moskva, 1980 | MR

[5] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, izd-vo “Nauka”, Moskva, 1972 | MR

[6] Dzh. Kassels, A. Frelikh (red.), “Algebraicheskaya teoriya chisel”, Sb. statei, izd-vo “Mir”, Moskva,, 1969

[7] R. A. Sarkisyan, “Problema sopryazhennosti dlya naborov tselochislennykh matrits”, Matem. zametki, 25:6 (1979), 811–824 | MR | Zbl

[8] X. Kokh, Teoriya Galua $p$-rasshirenii, izd-vo “Mir”, Moskva, 1973 | MR

[9] G. Keisler, Ch. Ch. Chen, Teoriya modelei, izd-vo “Mir”, Moskva, 1977 | MR

[10] V. V. Ishkhanov, “Zadacha pogruzheniya s ogranichennym vetvleniem”, Izv. AN SSSR, seriya matem., 36 (1972), 742–748 | Zbl

[11] M. I. Bashmakov, “Kogomologii abelevykh mnogoobrazii”, Uspekhi matem. nauk, XXVII:6(188) (1972), 25–66

[12] V. E. Voskresenskii, Algebraicheskie tory, izd-vo “Nauka”, Moskva, 1977 | MR | Zbl

[13] A. Seidenberg, “Constraction in algebra”, Trans. Amer. Math. Soc., 197 (1974), 273–313 | DOI | MR | Zbl