Galois cohomology and some questions of the theory of algorithms
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 519-545
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be an arbitrary linear algebraic group defined over an algebraic number field $K$, let $R$ be its solvable radical, let $S=G/R$, and let $\widetilde S$ be the simply connected covering group of $S$. The basic result of the paper asserts that whether any two Galois 1-cocycles in $Z_1(K,G)$ are cohomologous is algorithmically verifiable, if the “Hasse principle” holds for $\widetilde S$.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1981_39_4_a5,
     author = {R. A. Sarkisyan},
     title = {Galois cohomology and some questions of the theory of algorithms},
     journal = {Sbornik. Mathematics},
     pages = {519--545},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_4_a5/}
}
                      
                      
                    R. A. Sarkisyan. Galois cohomology and some questions of the theory of algorithms. Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 519-545. http://geodesic.mathdoc.fr/item/SM_1981_39_4_a5/
