Best approximation methods and the order of informativeness of systems
Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 479-500
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of approximating a linear functional from approximate values of a system of functionals is considered. The concept of the order of informativeness of a system is introduced as the minimal number of functionals that can be retained without making the approximation error worse. For approximation with respect to an orthonormal system of functionals in a Hilbert space the order of informativeness, the best approximation method, and its error are determined. Bibliography: 4 titles.
@article{SM_1981_39_4_a3,
author = {K. Yu. Osipenko},
title = {Best approximation methods and the order of informativeness of systems},
journal = {Sbornik. Mathematics},
pages = {479--500},
year = {1981},
volume = {39},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_39_4_a3/}
}
K. Yu. Osipenko. Best approximation methods and the order of informativeness of systems. Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 479-500. http://geodesic.mathdoc.fr/item/SM_1981_39_4_a3/
[1] C. A. Micchelli, T. J. Rivlin, A survey of optimal recovery, Optimal estimation in approximation theory, Plenum Press, New York, 1977 | MR
[2] A. G. Marchuk, K. Yu. Osipenko, “Nailuchshee priblizhenie funktsii, zadannykh s pogreshnostyu v konechnom chisle tochek”, Matem. zametki, 17:3 (1975), 359–368 | MR | Zbl
[3] S. M. Nikolskii, “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR, seriya matem., 10 (1946), 207–256
[4] V. Ya. Arsenii, “Ob optimalnom summirovanii ryadov Fure s priblizhennymi koeffitsientami”, DAN SSSR, 183:2 (1968), 257–260