Stabilization of solutions of the first mixed problem for a~parabolic equation of second order
Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 449-467

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior for large time of the solution $u(t,x)$ in an unbounded domain $\Omega\subset R_n$ of the first mixed problem for the parabolic equation \begin{gather} u_t=(a_{ij}(t,x)u_{x_j})_{x_i},\qquad(t,x)\in(t>0)\times\Omega,\\ \gamma^{-1}|y|^2\leqslant a_{ij}(t,x)y_iy_j\leqslant\gamma|y|^2, \end{gather} with initial function $\varphi$, $\operatorname{supp}\varphi\subset K_{R_0}$, $K_r=\{|x|$, is investigated. It is shown that the function $\lambda(r)$, which for each fixed $r$ is the first eigenvalue of the Dirichlet problem for the operator $-\Delta$ in $\Omega_r=\Omega\cap K_r$, for a certain class of domains determines the rate at which the solution $u(t,x)$ tends to zero as $t\to\infty$. Namely, let $r(t)$ be the function inverse to the monotone increasing function $F(r)=r/\sqrt{\lambda(r)}$. Then for all $t\geqslant T$ and all $x$ in $\Omega$ \begin{equation} |u(t,x)|\leqslant M\exp\biggl(-\varkappa\,\frac{r^2(t)}t\biggr)\|\varphi\|_{L_2(\Omega)}. \end{equation} Here the constant $\varkappa$ depends only on $n$ and $\gamma$ of (2), while $T$ and $M$ depend on $\Omega$, $\gamma$, and $R_0$. It is proved that for a certain class of domains the estimate (3) is in a sense best possible. Bibliography: 13 titles.
@article{SM_1981_39_4_a1,
     author = {F. Kh. Mukminov},
     title = {Stabilization of solutions of the first mixed problem for a~parabolic equation of second order},
     journal = {Sbornik. Mathematics},
     pages = {449--467},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_4_a1/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Stabilization of solutions of the first mixed problem for a~parabolic equation of second order
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 449
EP  - 467
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_4_a1/
LA  - en
ID  - SM_1981_39_4_a1
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Stabilization of solutions of the first mixed problem for a~parabolic equation of second order
%J Sbornik. Mathematics
%D 1981
%P 449-467
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_4_a1/
%G en
%F SM_1981_39_4_a1
F. Kh. Mukminov. Stabilization of solutions of the first mixed problem for a~parabolic equation of second order. Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 449-467. http://geodesic.mathdoc.fr/item/SM_1981_39_4_a1/