Stabilization of solutions of the first mixed problem for a parabolic equation of second order
Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 449-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behavior for large time of the solution $u(t,x)$ in an unbounded domain $\Omega\subset R_n$ of the first mixed problem for the parabolic equation \begin{gather} u_t=(a_{ij}(t,x)u_{x_j})_{x_i},\qquad(t,x)\in(t>0)\times\Omega,\\ \gamma^{-1}|y|^2\leqslant a_{ij}(t,x)y_iy_j\leqslant\gamma|y|^2, \end{gather} with initial function $\varphi$, $\operatorname{supp}\varphi\subset K_{R_0}$, $K_r=\{|x|, is investigated. It is shown that the function $\lambda(r)$, which for each fixed $r$ is the first eigenvalue of the Dirichlet problem for the operator $-\Delta$ in $\Omega_r=\Omega\cap K_r$, for a certain class of domains determines the rate at which the solution $u(t,x)$ tends to zero as $t\to\infty$. Namely, let $r(t)$ be the function inverse to the monotone increasing function $F(r)=r/\sqrt{\lambda(r)}$. Then for all $t\geqslant T$ and all $x$ in $\Omega$ \begin{equation} |u(t,x)|\leqslant M\exp\biggl(-\varkappa\,\frac{r^2(t)}t\biggr)\|\varphi\|_{L_2(\Omega)}. \end{equation} Here the constant $\varkappa$ depends only on $n$ and $\gamma$ of (2), while $T$ and $M$ depend on $\Omega$, $\gamma$, and $R_0$. It is proved that for a certain class of domains the estimate (3) is in a sense best possible. Bibliography: 13 titles.
@article{SM_1981_39_4_a1,
     author = {F. Kh. Mukminov},
     title = {Stabilization of solutions of the first mixed problem for a~parabolic equation of second order},
     journal = {Sbornik. Mathematics},
     pages = {449--467},
     year = {1981},
     volume = {39},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_4_a1/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Stabilization of solutions of the first mixed problem for a parabolic equation of second order
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 449
EP  - 467
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_4_a1/
LA  - en
ID  - SM_1981_39_4_a1
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Stabilization of solutions of the first mixed problem for a parabolic equation of second order
%J Sbornik. Mathematics
%D 1981
%P 449-467
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1981_39_4_a1/
%G en
%F SM_1981_39_4_a1
F. Kh. Mukminov. Stabilization of solutions of the first mixed problem for a parabolic equation of second order. Sbornik. Mathematics, Tome 39 (1981) no. 4, pp. 449-467. http://geodesic.mathdoc.fr/item/SM_1981_39_4_a1/

[1] Yu. N. Cheremnykh, “O povedenii reshenii kraevykh zadach dlya parabolicheskikh uravnenii vtorogo poryadka pri neogranichennom vozrastanii $t$”, Matem. sb., 75(117) (1968), 241–154

[2] A. K. Guschin, “Ob otsenkakh reshenii kraevykh zadach dlya parabolicheskogo uravneniya vtorogo poryadka”, Trudy matem. in-ta AN SSSR im. V. A. Steklova, CXXVI (1973), 5–45

[3] A. K. Guschin, Otsenki reshenii vtoroi i tretei kraevykh zadach v neogranichennykh po prostranstvennym peremennym oblastyakh dlya parabolicheskogo uravneniya vtorogo poryadka, Doktorskaya dissertatsiya, Moskva, 1973

[4] A. K. Guschin, “Stabilizatsiya reshenii vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 101(143) (1976), 459–499 | Zbl

[5] V. I. Ushakov, “O povedenii reshenii tretei smeshannoi zadachi dlya parabolicheskikh uravnenii vtorogo poryadka pri $t\to\infty$”, Diff. uravneniya, 15:2 (1979), 310–320 | MR | Zbl

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, izd-vo “Nauka”, Moskva, 1967

[7] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–953 | DOI | MR

[8] O. A. Ladyzhenskaya i N. N. Uraltseva, “Kraevaya zadacha dlya lineinykh i kvazilineinykh parabolicheskikh uravnenii”, DAN SSSR, 139:3 (1961), 544–547 | Zbl

[9] S. N. Kruzhkov, “Apriornye otsenki i nekotorye svoistva reshenii ellipticheskikh i parabolicheskikh uravnenii vtorogo poryadka”, DAN SSSR, 150:4 (1963), 748–751 | Zbl

[10] J. Moser, “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 17:1 (1964), 101–134 | DOI | MR | Zbl

[11] A. K. Guschin, “Nekotorye svoistva obobschennogo resheniya vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 97(139) (1975), 242–261 | Zbl

[12] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, izd-vo “Nauka”, Moskva, 1976 | MR

[13] D. G. Aronson, “Non-negative solutions of linear parabolic equations”, Ann. Scuola Norm. Super. Pisa, 22:4 (1968), 607–694 | MR | Zbl