On Luzin spaces
Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 405-415

Voir la notice de l'article provenant de la source Math-Net.Ru

The main results of the paper are the following theorems: Theorem 1. {\it The following proposition is consistent with the system $ZFC$: $\mathscr {PMS}$. In a product of a family of not more than $2^\mathfrak c$ separable complete metric spaces without isolated points, there exists a dense Luzin subspace of cardinal $\mathfrak c$; if the family is uncountable, then every countable subset of the Luzin subspace is closed.} Theorem 2 [CH]. In a nondiscrete topological group every element of which has order 2, and whose space satisfies the Suslin conditions, has the Baire property and has $\pi$-weight not greater than $\mathfrak c$, there exists a dense Luzin subgroup. Theorem 3. The system $ZFC$ is consistent with the assertion that in any generalized Cantor discontinuum $D^m$ of infinite weight $m$ not greater than $2^\mathfrak c$, considered as a topological group, there exists a dense Luzin subgroup of cardinal $\mathfrak c$. Bibliography: 14 titles.
@article{SM_1981_39_3_a5,
     author = {V. I. Malykhin},
     title = {On {Luzin} spaces},
     journal = {Sbornik. Mathematics},
     pages = {405--415},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_3_a5/}
}
TY  - JOUR
AU  - V. I. Malykhin
TI  - On Luzin spaces
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 405
EP  - 415
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_3_a5/
LA  - en
ID  - SM_1981_39_3_a5
ER  - 
%0 Journal Article
%A V. I. Malykhin
%T On Luzin spaces
%J Sbornik. Mathematics
%D 1981
%P 405-415
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_3_a5/
%G en
%F SM_1981_39_3_a5
V. I. Malykhin. On Luzin spaces. Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 405-415. http://geodesic.mathdoc.fr/item/SM_1981_39_3_a5/