On strong solutions and explicit formulas for solutions of stochastic integral equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 387-403
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions are obtained under which the stochastic equation
$$
x_t=x+\int^t_0\sigma(s,x_s)\,dw_s+\int^t_0b(s,x_s)\,ds
$$
has a strong solution. In particular, in the multidimensional case where the diffusion matrix $\sigma$ is the identity matrix and the drift vector $b$ is bounded, these conditions are satisfied.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1981_39_3_a4,
     author = {A. Yu. Veretennikov},
     title = {On strong solutions and explicit formulas for solutions of stochastic integral equations},
     journal = {Sbornik. Mathematics},
     pages = {387--403},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_3_a4/}
}
                      
                      
                    A. Yu. Veretennikov. On strong solutions and explicit formulas for solutions of stochastic integral equations. Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 387-403. http://geodesic.mathdoc.fr/item/SM_1981_39_3_a4/
