On strong solutions and explicit formulas for solutions of stochastic integral equations
Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 387-403

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are obtained under which the stochastic equation $$ x_t=x+\int^t_0\sigma(s,x_s)\,dw_s+\int^t_0b(s,x_s)\,ds $$ has a strong solution. In particular, in the multidimensional case where the diffusion matrix $\sigma$ is the identity matrix and the drift vector $b$ is bounded, these conditions are satisfied. Bibliography: 13 titles.
@article{SM_1981_39_3_a4,
     author = {A. Yu. Veretennikov},
     title = {On strong solutions and explicit formulas for solutions of stochastic integral equations},
     journal = {Sbornik. Mathematics},
     pages = {387--403},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_3_a4/}
}
TY  - JOUR
AU  - A. Yu. Veretennikov
TI  - On strong solutions and explicit formulas for solutions of stochastic integral equations
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 387
EP  - 403
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_3_a4/
LA  - en
ID  - SM_1981_39_3_a4
ER  - 
%0 Journal Article
%A A. Yu. Veretennikov
%T On strong solutions and explicit formulas for solutions of stochastic integral equations
%J Sbornik. Mathematics
%D 1981
%P 387-403
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_3_a4/
%G en
%F SM_1981_39_3_a4
A. Yu. Veretennikov. On strong solutions and explicit formulas for solutions of stochastic integral equations. Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 387-403. http://geodesic.mathdoc.fr/item/SM_1981_39_3_a4/