Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 359-386
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers regular submanifolds of Euclidean space $E^N$. It is shown that if $R^m$ is a submanifold of negative curvature of $E^N$ and at each point there are $m$ principal directions, then there are hypersurfaces of $R^m$ orthogonal to them; these can be taken as the coordinate hypersurfaces. Furthermore, general properties of an isometric immersion of $n$-dimensional Lobachevsky space $L^n$ in $E^{2n-1}$ are considered. It is proved that, for any $k$-dimensional submanifold of $L^n\subset E^{2n-1}$ for $k\geqslant2$ and $n>2$, the $k$-dimensional volume of its image in $G_{n-1,2n-1}$ under a Grassmann mapping of $L^n$ is greater than the volume of its inverse image. The curvature $\overline K$ of $G_{n-1,2n-1}$ for elements of area tangent to the Grassmann image of $L^n$ lie in the open interval $(0,1)$. A formula is obtained for the curvature of a Grassmann manifold for elements of area tangent to the Grassmann image of an arbitrary submanifold of $E^N$, expressed in terms of the second quadratic forms of this submanifold.
The fundamental system of equations of an immersion of $L^n$ in $E^{2n-1}$ is investigated. Immersions of $L^3$ in $E^5$ under which one family of lines of curvature is composed of $L^3$ geodesics of  are considered.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1981_39_3_a3,
     author = {Yu. A. Aminov},
     title = {Isometric immersions of domains of $n$-dimensional {Lobachevsky} space in $(2n-1)$-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {359--386},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Aminov TI - Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space JO - Sbornik. Mathematics PY - 1981 SP - 359 EP - 386 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/ LA - en ID - SM_1981_39_3_a3 ER -
Yu. A. Aminov. Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space. Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 359-386. http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/
