Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 359-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers regular submanifolds of Euclidean space $E^N$. It is shown that if $R^m$ is a submanifold of negative curvature of $E^N$ and at each point there are $m$ principal directions, then there are hypersurfaces of $R^m$ orthogonal to them; these can be taken as the coordinate hypersurfaces. Furthermore, general properties of an isometric immersion of $n$-dimensional Lobachevsky space $L^n$ in $E^{2n-1}$ are considered. It is proved that, for any $k$-dimensional submanifold of $L^n\subset E^{2n-1}$ for $k\geqslant2$ and $n>2$, the $k$-dimensional volume of its image in $G_{n-1,2n-1}$ under a Grassmann mapping of $L^n$ is greater than the volume of its inverse image. The curvature $\overline K$ of $G_{n-1,2n-1}$ for elements of area tangent to the Grassmann image of $L^n$ lie in the open interval $(0,1)$. A formula is obtained for the curvature of a Grassmann manifold for elements of area tangent to the Grassmann image of an arbitrary submanifold of $E^N$, expressed in terms of the second quadratic forms of this submanifold. The fundamental system of equations of an immersion of $L^n$ in $E^{2n-1}$ is investigated. Immersions of $L^3$ in $E^5$ under which one family of lines of curvature is composed of $L^3$ geodesics of are considered. Bibliography: 15 titles.
@article{SM_1981_39_3_a3,
     author = {Yu. A. Aminov},
     title = {Isometric immersions of domains of $n$-dimensional {Lobachevsky} space in $(2n-1)$-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {359--386},
     year = {1981},
     volume = {39},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 359
EP  - 386
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/
LA  - en
ID  - SM_1981_39_3_a3
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
%J Sbornik. Mathematics
%D 1981
%P 359-386
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/
%G en
%F SM_1981_39_3_a3
Yu. A. Aminov. Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space. Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 359-386. http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/

[1] N. V. Efimov, “Nepogruzhaemost poluploskosti Lobachevskogo”, Vestnik MGU, seriya matem. i mekh., 1975, no. 2, 83–86 | MR | Zbl

[2] E. G. Poznyak, “Izometricheskoe pogruzhenie v $E^3$ nekotorykh nekompaktnykh oblastei ploskosti Lobachevskogo”, Matem. sb., 102(144) (1977), 3–12 | Zbl

[3] E. G. Poznyak, “Geometricheskie issledovaniya, svyazannye s uravneniem $z_{xy}=\sin z$”, Itogi nauki. Problemy geometrii, 8, VINITI AN SSSR, Moskva, 1976, 227–243

[4] G. Blanusa, “Über die Einbettung hyperbolischer Raume”, Monatsh. Math., 59:3 (1955), 217–229 | DOI | MR | Zbl

[5] E. R. Rozendorn, “Realizatsiya metriki $ds^2=du^2+f(u)\,dv^2$ v pyatimernom evklidovom prostranstve”, DAN Arm. SSR, 30:4 (1960), 197–199 | MR

[6] J. D. Moore, “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–167 | MR

[7] Yu. A. Aminov, “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, DAN SSSR, 236:3 (1977), 521–524 | MR | Zbl

[8] N. V. Efimov, “Vozniknovenie osobennostei na poverkhnostyakh otritsatelnoi krivizny”, Matem. sb., 64(106) (1964), 286–320 | MR | Zbl

[9] A. A. Borisenko, “Ob izometricheskom pogruzhenii psevdorimanovykh prostranstv postoyannoi krivizny”, Ukr. geom. sb., 1976, no. 19, 11–18 | MR | Zbl

[10] G. Darboux, Lesons sur les systemes orthogonaux et les coordonnes curvilignes, Paris, 1910

[11] L. Bianchi, Lezioni di geometria differenziale, 2, part 2, Bologna, 1924 | Zbl

[12] Yu. A. Aminov, “Preobrazovanie Bianki dlya oblasti mnogomernogo prostranstva Lobachevskogo”, Ukr. geom. sb., 1978, no. 21, 3–5 | MR | Zbl

[13] L. P. Eizenkhart, Rimanova geometriya, IL, Moskva, 1948

[14] Yu. A. Aminov, “O grassmanovom obraze dvumernoi poverkhnosti v chetyrekhmernom evklidovom prostranstve”, Ukr. geom. sb., 1979, no. 23

[15] Y.-C. Wong, “Sectional curvatures of Grassmann manifolds”, Proc Nat. Acad. Sci. USA, 60:1 (1968), 75–79 | DOI | MR | Zbl