Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 359-386

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers regular submanifolds of Euclidean space $E^N$. It is shown that if $R^m$ is a submanifold of negative curvature of $E^N$ and at each point there are $m$ principal directions, then there are hypersurfaces of $R^m$ orthogonal to them; these can be taken as the coordinate hypersurfaces. Furthermore, general properties of an isometric immersion of $n$-dimensional Lobachevsky space $L^n$ in $E^{2n-1}$ are considered. It is proved that, for any $k$-dimensional submanifold of $L^n\subset E^{2n-1}$ for $k\geqslant2$ and $n>2$, the $k$-dimensional volume of its image in $G_{n-1,2n-1}$ under a Grassmann mapping of $L^n$ is greater than the volume of its inverse image. The curvature $\overline K$ of $G_{n-1,2n-1}$ for elements of area tangent to the Grassmann image of $L^n$ lie in the open interval $(0,1)$. A formula is obtained for the curvature of a Grassmann manifold for elements of area tangent to the Grassmann image of an arbitrary submanifold of $E^N$, expressed in terms of the second quadratic forms of this submanifold. The fundamental system of equations of an immersion of $L^n$ in $E^{2n-1}$ is investigated. Immersions of $L^3$ in $E^5$ under which one family of lines of curvature is composed of $L^3$ geodesics of are considered. Bibliography: 15 titles.
@article{SM_1981_39_3_a3,
     author = {Yu. A. Aminov},
     title = {Isometric immersions of domains of $n$-dimensional {Lobachevsky} space in $(2n-1)$-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {359--386},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 359
EP  - 386
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/
LA  - en
ID  - SM_1981_39_3_a3
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
%J Sbornik. Mathematics
%D 1981
%P 359-386
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/
%G en
%F SM_1981_39_3_a3
Yu. A. Aminov. Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space. Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 359-386. http://geodesic.mathdoc.fr/item/SM_1981_39_3_a3/