Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums
Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 299-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper begins a series of articles whose purpose is to obtain estimates for the Fourier coefficients of the eigenfunctions of the discrete spectrum of the Laplace operator on the Lobachevsky plane which are automorphic for the modular group. Identities are obtained which express sums of Kloosterman sums in terms of bilinear combinations of the Fourier coefficients of the eigenfunctions of the Laplace operator. The mean value of Kloosterman sums is also estimated, and an asymptotic formula is given for the mean value of the square of the modulus of the Fourier coefficients of the eigenfunctions of the discrete spectrum. Bibliography: 24 titles.
@article{SM_1981_39_3_a1,
     author = {N. V. Kuznetsov},
     title = {Petersson's conjecture for cusp forms of weight zero and {Linnik's} conjecture. {Sums} of {Kloosterman} sums},
     journal = {Sbornik. Mathematics},
     pages = {299--342},
     year = {1981},
     volume = {39},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_3_a1/}
}
TY  - JOUR
AU  - N. V. Kuznetsov
TI  - Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 299
EP  - 342
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_3_a1/
LA  - en
ID  - SM_1981_39_3_a1
ER  - 
%0 Journal Article
%A N. V. Kuznetsov
%T Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums
%J Sbornik. Mathematics
%D 1981
%P 299-342
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1981_39_3_a1/
%G en
%F SM_1981_39_3_a1
N. V. Kuznetsov. Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums. Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 299-342. http://geodesic.mathdoc.fr/item/SM_1981_39_3_a1/

[1] H. Maass, “Über eine neue Art von nichtanalitischen automorphen Funktionen”, Math. Ann., 121:2 (1949), 141–183 | DOI | MR | Zbl

[2] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, Indian J. Math. Soc., 20 (1956), 47–87 | MR | Zbl

[3] A. B. Venkov, V. L. Kalinin, L. D. Faddeev, “Nearifmeticheskii vyvod formuly sleda Selberga”, Zapiski nauchn. seminarov LOMI, 37 (1973), 5–42 | MR | Zbl

[4] A. Selberg, “On the estimation of Fourier coefficients of modular forms”, Proc. of Symposia in Pure Math., VIII, Amer. Math. Soc., Providence, 1965, 1–15 | MR

[5] L. D. Faddeev, “Razlozhenie po sobstvennym funktsiyam operatora Laplasa na fundamentalnoi oblasti diskretnoi gruppy na ploskosti Lobachevskogo”, Trudy Mosk. matem. ob-va, 17 (1967), 323–350 | MR | Zbl

[6] W. Roelcke, “Über die Wellengleichung bei Grénzkreisgruppen erster Art”, Sitzungsber. Heidelberg. Acad. Wiss., 4 Abh. (1953/1955), 161–267

[7] W. Roelcke, “Analytische Fortzetzung der Eisenstenreichen zu den parabolische Spitzen von Grenzkreisgruppen erster Art”, Math. Ann., 132:2 (1956), 121–129 | DOI | MR | Zbl

[8] T. Kubota, Elementary theory of Eisenstein's series, Kodancha, Tokyo, 1974 | MR | Zbl

[9] H. V. Kuznetsov, Gipoteza Petersona dlya form vesa nul i gipoteza Linnika, preprint KhabKNII DVNTs AN SSSR, Khabarovsk, 1977 | Zbl

[10] N. V. Kuznetsov, Arifmeticheskaya forma formuly sleda Selberga i raspredelenie norm primitivnykh giperbolicheskikh klassov modulyarnoi gruppy, preprint KhabKNII DVNTs AN SSSR, Khabarovsk, 1978 | MR

[11] N. V. Kuznetsov, Asimptoticheskie formuly dlya sobstvennykh znachenii operatora Laplasa na fundamentalnoi oblasti modulyarnoi gruppy, preprint KhabKNII DVNTs AN SSSR, Khabarovsk, 1978 | MR

[12] N. V. Kuznetsov, “Raspredelenie norm primitivnykh klassov modulyarnoi gruppy i asimptoticheskie formuly dlya sobstvennykh znachenii operatora Laplasa–Beltrami na fundamentalnoi oblasti modulyarnoi gruppy”, DAN SSSR, 242:1 (1978), 40–43 | MR | Zbl

[13] R. W. Bruggeman, “Fourier Coefficients of Cusp Forms”, Invent. math., 45 (1978), 1–18 | DOI | MR | Zbl

[14] E. Hecke, “Über modulfunctionen und die Dirichletschen Reihen mit Eulerschen Productenwicklung”, Math. Ann., 114 (1937), 1–28 | DOI | MR

[15] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, t. 2, izd-vo “Nauka”, Moskva, 1968

[16] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, OGIZ, Moskva–Leningrad, 1948

[17] Yu. V. Linnik, “Additive problems and eigenvalues modular operators”, Proc. of the International Congress of Math., Stockholm, 1962, 270–284 | MR

[18] P. Cartier, “Some numerical computations relating to automorphic functions”, Computers in numbers theory, Academic press, London and New-York, 1971, 37–48

[19] A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl

[20] A. V. Malyshev, O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami, Trudy Matem. in-ta im. V. A. Steklova, LXV, 1962 | MR | Zbl

[21] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana publaddr Moskva, IL, 1953

[22] H. Maass, Lectures on modular functions of the complex variable, Tata Institute Fund. Research, Bombey, 1964 | MR | Zbl

[23] A. Selberg, S. Chowla, “On Epstein's zeta-function”, J. reine und angew. Math., 227 (1967), 86–110 ; Proc. Nat. Acad. USA, 35 (1949), 371–374 | MR | Zbl | DOI | MR | Zbl

[24] H. V. Proskurin, “Formuly summirovaniya dlya obschikh summ Kloostermana”, Zapiski nauchn. seminarov LOMI, 82, 1979, 103–135 | Zbl