Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 299-342
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper begins a series of articles whose purpose is to obtain estimates for the Fourier coefficients of the eigenfunctions of the discrete spectrum of the Laplace operator on the Lobachevsky plane which are automorphic for the modular group.
Identities are obtained which express sums of Kloosterman sums in terms of bilinear combinations of the Fourier coefficients of the eigenfunctions of the Laplace operator. The mean value of Kloosterman sums is also estimated, and an asymptotic formula is given for the mean value of the square of the modulus of the Fourier coefficients of the eigenfunctions of the discrete spectrum.
Bibliography: 24 titles.
			
            
            
            
          
        
      @article{SM_1981_39_3_a1,
     author = {N. V. Kuznetsov},
     title = {Petersson's conjecture for cusp forms of weight zero and {Linnik's} conjecture. {Sums} of {Kloosterman} sums},
     journal = {Sbornik. Mathematics},
     pages = {299--342},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_3_a1/}
}
                      
                      
                    TY - JOUR AU - N. V. Kuznetsov TI - Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums JO - Sbornik. Mathematics PY - 1981 SP - 299 EP - 342 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_39_3_a1/ LA - en ID - SM_1981_39_3_a1 ER -
N. V. Kuznetsov. Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums. Sbornik. Mathematics, Tome 39 (1981) no. 3, pp. 299-342. http://geodesic.mathdoc.fr/item/SM_1981_39_3_a1/
