On the generation of finite groups by classes of involutions
Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 243-253

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be an invariant subset of involutions of the finite group $G$. $D$ satisfies the condition of coherence, if for any two distinct commuting involutions of $D$ their product also belongs to $D$. $D$ satisfies the condition of separability if the product of any two involutions of is a 2-element or a $2'$-element. In this paper it is proved that if the finite group $G$ is generated by an invariant subset of involutions $D$ satisfying the coherence and separability conditions, and if $D\cap O_2(G)=\varnothing$, then either $G$ has a Sylow 2-subgroup of order 2, or $Z(G)$ has odd order, $G=G'$, and the factor group $G/Z(G)$ is isomorphic to one of the following simple groups: $L_2(p)$, $p$ a Fermat or a Mersenne prime number, $L_2(q)$, $Sz(q)$, $U_3(q)$, $L_3(q)$, $G_2(q)$ ($G_2(q)'$ respectively), $^3D_4(q)$, $q$ even, $A_6$ or $J_2$. Bibliography: 25 titles.
@article{SM_1981_39_2_a5,
     author = {A. A. Makhnev},
     title = {On the generation of finite groups by classes of involutions},
     journal = {Sbornik. Mathematics},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_2_a5/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On the generation of finite groups by classes of involutions
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 243
EP  - 253
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_2_a5/
LA  - en
ID  - SM_1981_39_2_a5
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On the generation of finite groups by classes of involutions
%J Sbornik. Mathematics
%D 1981
%P 243-253
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_2_a5/
%G en
%F SM_1981_39_2_a5
A. A. Makhnev. On the generation of finite groups by classes of involutions. Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/SM_1981_39_2_a5/