On the generation of finite groups by classes of involutions
Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 243-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $D$ be an invariant subset of involutions of the finite group $G$. $D$ satisfies the condition of coherence, if for any two distinct commuting involutions of $D$ their product also belongs to $D$. $D$ satisfies the condition of separability if the product of any two involutions of is a 2-element or a $2'$-element. In this paper it is proved that if the finite group $G$ is generated by an invariant subset of involutions $D$ satisfying the coherence and separability conditions, and if $D\cap O_2(G)=\varnothing$, then either $G$ has a Sylow 2-subgroup of order 2, or $Z(G)$ has odd order, $G=G'$, and the factor group $G/Z(G)$ is isomorphic to one of the following simple groups: $L_2(p)$, $p$ a Fermat or a Mersenne prime number, $L_2(q)$, $Sz(q)$, $U_3(q)$, $L_3(q)$, $G_2(q)$ ($G_2(q)'$ respectively), $^3D_4(q)$, $q$ even, $A_6$ or $J_2$. Bibliography: 25 titles.
@article{SM_1981_39_2_a5,
     author = {A. A. Makhnev},
     title = {On the generation of finite groups by classes of involutions},
     journal = {Sbornik. Mathematics},
     pages = {243--253},
     year = {1981},
     volume = {39},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_2_a5/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On the generation of finite groups by classes of involutions
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 243
EP  - 253
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_2_a5/
LA  - en
ID  - SM_1981_39_2_a5
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On the generation of finite groups by classes of involutions
%J Sbornik. Mathematics
%D 1981
%P 243-253
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_39_2_a5/
%G en
%F SM_1981_39_2_a5
A. A. Makhnev. On the generation of finite groups by classes of involutions. Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/SM_1981_39_2_a5/

[1] N. Ivakhori, “Tsentralizatory involyutsii v konechnykh gruppakh Shevalle”, Seminar po algebraicheskim gruppam, izd-vo “Mir”, Moskva, 1973, 463–487 | MR

[2] V. M. Sitnikov, “O gruppe Mate $M_{12}$”, Matem. zametki, 15:4 (1974), 651–660 | MR | Zbl

[3] M. Aschbacher, “On finite groups generated by odd transpositions, I–IV”, Math. Z., 127:1 (1972), 45–56 ; J. Algebra, 26:3 (1973), 451–491 | DOI | MR | Zbl | DOI | MR

[4] M. Aschbacher, “A condition for the existence of a strongly embedded subgroup”, Proc. Amer. Math. Soc., 38:3 (1973), 509–511 | DOI | MR | Zbl

[5] M. Aschbacher, “On finite groups of component type, III”, J. Math., 19:1 (1975), 87–115 | MR | Zbl

[6] M. Aschbacher, “Finite groups in which the generalized Fitting group of the centralizer of some involution is symplectic but not extraspecial”, Comm. Algebra, 4:7 (1976), 595–616 | DOI | MR | Zbl

[7] M. Aschbacher, G. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63:1 (1976), 1–92 | MR

[8] M. Aschbacher, G. Seitz, “On groups with a standard component of known type”, Osaka J. Math., 13:3 (1976), 439–482 | MR | Zbl

[9] M. Aschbacher, “A characterization of Chevalley groups over fields of odd order. I–II”, Ann. Math., 106:2 (1977), 353–398 | DOI | MR | Zbl

[10] X. Bender, “Transitive Gruppen gerader Ordnung in denen jede Involution genau einen Punkt festlässt”, J. Algebra, 17:3 (1971), 527–554 | DOI | MR | Zbl

[11] N. Burgoyne, “Finite groups with Chevalley-type components”, Pacif. J. Math., 72:2 (1977), 341–350 | MR | Zbl

[12] B. Fischer, “Finite groups generated by $3$-transitions”, Invent. Math., 13:3 (1971), 232–246 | DOI | MR | Zbl

[13] H. Fukushima, “Weakly closed cyclic $2$-subgroups in finite groups”, J. Math. Soc. Japan, 30:1 (1978), 133–138 | DOI | MR

[14] G. Glauberman, “Central elements in core-free groups”, J. Algebra, 4:3 (1966), 403–420 | DOI | MR | Zbl

[15] D. Goldschmidt, “Strongly closed $2$-subgroups of finite groups”, Ann. Math., 102:3 (1975), 475–489 | DOI | MR | Zbl

[16] R. Griess, “Schur multipliers of finite simple groups of Lie type”, Trans. Amer. Math. Soc., 183 (1973), 355–422 | DOI | MR

[17] R. Griess, “Schur multipliers of some sporadic simple groups”, J. Algebra, 32:2 (1974), 445–466 | DOI | MR | Zbl

[18] R. Griess, D. Mason, G. Seitz, “Bender groups as standard subgroups”, Trans. Amer. Math. Soc., 238 (1978), 179–211 | DOI | MR | Zbl

[19] M. Harris, “Finite groups having an involution centralizer with a $2$-component of dihedral type. III”, J. Math., 21:3 (1977), 621–647 | MR | Zbl

[20] A. Prince, “Finite groups in which centralizers of involutions are partially $2$-closed”, Proc. London Math. Soc., 30:2 (1975), 196–208 | DOI | MR | Zbl

[21] M. Suzuki, “Finite groups in which the centralizer of any element of order $2$ is $2$-closed”, Ann. Math., 82:1 (1965), 191–212 | DOI | MR | Zbl

[22] F. Timmesfeld, “Groups with weakly closed $TI$-subgroups”, Math. Z., 143 (1975), 243–278 | DOI | MR | Zbl

[23] F. Timmesfeld, “Groups generated by root-involutions, I–II”, J. Algebra, 33:1 (1975), 75–134 | DOI | MR | Zbl

[24] F. Timmesfeld, “On elementary abelian $TL$-subgroups”, J. Algebra, 44:2 (1977), 457–476 | DOI | MR | Zbl

[25] F. Timmesfeld, “On the structure 2-local subgroups in finite groups”, Math. Z., 161:1 (1978), 119–136 | DOI | MR | Zbl