@article{SM_1981_39_2_a4,
author = {V. F. Gaposhkin},
title = {The local ergodic theorem for groups of unitary operators and second order stationary processes},
journal = {Sbornik. Mathematics},
pages = {227--242},
year = {1981},
volume = {39},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/}
}
V. F. Gaposhkin. The local ergodic theorem for groups of unitary operators and second order stationary processes. Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 227-242. http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/
[1] N. Danford, Dzh. Shvarts, Lineinye operatory, t. 1, IL, Moskva, 1962
[2] N. Wiener, “The ergodic theorem”, Duke Math. J., 5:1 (1939), 1–18 | DOI | MR | Zbl
[3] U. Krengel, “A local ergodic theorem”, Invent. math., 6 (1969), 329–333 | DOI | MR | Zbl
[4] T. R. Terrell, “Local ergodic theorems for $N$-parameter semigroups of operators”, Lecture Notes Math., 160 (1970), 53–63 | DOI | MR
[5] V. F. Gaposhkin, “Kriterii usilennogo zakona bolshikh chisel dlya klassov statsionarnykh protsessov i odnorodnykh sluchainykh polei”, Teoriya veroyatnostei, XXII:2 (1977), 295–319
[6] V. F. Gaposhkin, “Odna teorema o skhodimosti posledovatelnosti izmerimykh funktsii i ee primeneniya k posledovatelnostyam stokhasticheskikh integralov”, Matem. sb., 104(146) (1977), 3–21 | Zbl
[7] V. F. Gaposhkin, “Tochnye otsenki skorosti skhodimosti v usilennom zakone bolshikh chisel dlya klassov statsionarnykh v shirokom smysle posledovatelnostei i protsessov”, Uspekhi matem. nauk, XXXI:5(191) (1976), 233–234
[8] Y. Kubokawa, “Ergodic theorems for contraction semi-groups”, J. Math. Soc. Japan, 27:2 (1975), 184–193 | DOI | MR | Zbl
[9] Y. Kubokawa, “A general ergodic theorem”, Proc. Japan Acad. Sci., 48 (1972), 461–465 | DOI | MR | Zbl
[10] R. Sato, “On a local ergodic theorem”, Studia Math., 58 (1976), 1–5 | MR | Zbl