The local ergodic theorem for groups of unitary operators and second order stationary processes
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 227-242
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(U_t)^\infty_{-\infty}$, be a strongly continuous unitary group in $L_2(X,S,\mu)$, where $\mu$ is a $\sigma$-finite measure. 
The local ergodic theorem is the relation
\begin{equation}
\lim_{t\to0}\frac1t\int^t_0(U_\tau f)(x)\,d\tau=f(x)\quad \text{a.\,e.}
\end{equation}
for $f\in L_2(X)$. It is shown that this relation is not satisfied for all $f\in L_2(X)$ and $\{U_t\}$. Necessary and sufficient conditions are obtained for the local ergodic theorem in terms of properties of the spectral measure $\{E(d\lambda)f\}$, where $\{E(d\lambda)\}$ is the resolution of the identity corresponding to the group $(U_t)$. In particular, (1) is satisfied if the integral
$$
\int^\infty_{-\infty}[\log\log(\lambda^2+2)]^2\cdot\|E(d\lambda)f\|^2
$$
converges. Generalizations to multiparameter groups and homogeneous random fields are given.
Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_1981_39_2_a4,
     author = {V. F. Gaposhkin},
     title = {The local ergodic theorem for groups of unitary operators and second order stationary processes},
     journal = {Sbornik. Mathematics},
     pages = {227--242},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/}
}
                      
                      
                    TY - JOUR AU - V. F. Gaposhkin TI - The local ergodic theorem for groups of unitary operators and second order stationary processes JO - Sbornik. Mathematics PY - 1981 SP - 227 EP - 242 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/ LA - en ID - SM_1981_39_2_a4 ER -
V. F. Gaposhkin. The local ergodic theorem for groups of unitary operators and second order stationary processes. Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 227-242. http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/
