The local ergodic theorem for groups of unitary operators and second order stationary processes
Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 227-242

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(U_t)^\infty_{-\infty}$, be a strongly continuous unitary group in $L_2(X,S,\mu)$, where $\mu$ is a $\sigma$-finite measure. The local ergodic theorem is the relation \begin{equation} \lim_{t\to0}\frac1t\int^t_0(U_\tau f)(x)\,d\tau=f(x)\quad \text{a.\,e.} \end{equation} for $f\in L_2(X)$. It is shown that this relation is not satisfied for all $f\in L_2(X)$ and $\{U_t\}$. Necessary and sufficient conditions are obtained for the local ergodic theorem in terms of properties of the spectral measure $\{E(d\lambda)f\}$, where $\{E(d\lambda)\}$ is the resolution of the identity corresponding to the group $(U_t)$. In particular, (1) is satisfied if the integral $$ \int^\infty_{-\infty}[\log\log(\lambda^2+2)]^2\cdot\|E(d\lambda)f\|^2 $$ converges. Generalizations to multiparameter groups and homogeneous random fields are given. Bibliography: 10 titles.
@article{SM_1981_39_2_a4,
     author = {V. F. Gaposhkin},
     title = {The local ergodic theorem for groups of unitary operators and second order stationary processes},
     journal = {Sbornik. Mathematics},
     pages = {227--242},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - The local ergodic theorem for groups of unitary operators and second order stationary processes
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 227
EP  - 242
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/
LA  - en
ID  - SM_1981_39_2_a4
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T The local ergodic theorem for groups of unitary operators and second order stationary processes
%J Sbornik. Mathematics
%D 1981
%P 227-242
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/
%G en
%F SM_1981_39_2_a4
V. F. Gaposhkin. The local ergodic theorem for groups of unitary operators and second order stationary processes. Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 227-242. http://geodesic.mathdoc.fr/item/SM_1981_39_2_a4/