Some estimates for the partial indices of measurable matrix-valued functions
Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 207-226

Voir la notice de l'article provenant de la source Math-Net.Ru

Tests are given for nonnegativity, nonpositivity, and stability of partial indices of measurable bounded $n\times n$ matrix-valued functions defined on a contour $\Gamma$ along which the operator $S$ of singular integration is bounded in the spaces $L_p$, $1$. In particular, a sufficient condition is given for the coincidence of the partial indices of a matrix-valued function $G$ formulated in terms of the Hausdorff set of the matrices $G(t)$, $t\in \Gamma$. As auxiliary results, necessary and sufficient conditions are given for the operators of the form $T_G=\frac12(I-S)|\operatorname{Im}(I-S)$ to be Fredholm, or $n$- or $d$-normal in the case $G\in E^\pm_\infty+C$, and the behavior of the factorization is studied under the multiplication by such matrix-valued functions $G$ ($E^\pm_\infty$ are the Smirnov classes in the domains with boundary $\Gamma$ and $C$ is the class of functions continuous on $\Gamma$). In the case where $\Gamma$ is the unit circle, for the factorization in $L_2$ necessary and sufficient conditions are found for the nonnegativity (nonpositivity, and so on) of the partial indices. For a Lyapunov contour $\Gamma$ a sufficient condition (which is also necessary for $p=2$) is formulated for the vectorial boundary value problem of Riemann to be Fredholm in the spaces $L^n_p$ and $L^n_q$ ($q=p/(p-1)$). Bibliography: 38 titles.
@article{SM_1981_39_2_a3,
     author = {I. M. Spitkovsky},
     title = {Some estimates for the partial indices of measurable matrix-valued functions},
     journal = {Sbornik. Mathematics},
     pages = {207--226},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_2_a3/}
}
TY  - JOUR
AU  - I. M. Spitkovsky
TI  - Some estimates for the partial indices of measurable matrix-valued functions
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 207
EP  - 226
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_2_a3/
LA  - en
ID  - SM_1981_39_2_a3
ER  - 
%0 Journal Article
%A I. M. Spitkovsky
%T Some estimates for the partial indices of measurable matrix-valued functions
%J Sbornik. Mathematics
%D 1981
%P 207-226
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_2_a3/
%G en
%F SM_1981_39_2_a3
I. M. Spitkovsky. Some estimates for the partial indices of measurable matrix-valued functions. Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 207-226. http://geodesic.mathdoc.fr/item/SM_1981_39_2_a3/