Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups
Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 145-167
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proves the asymptotic normality of the random variables $\mu_r$ and linear combinations of them in an equiprobable scheme of distributing particles by groups. Bibliography: 4 titles.
@article{SM_1981_39_2_a0,
author = {V. G. Mikhailov},
title = {Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups},
journal = {Sbornik. Mathematics},
pages = {145--167},
year = {1981},
volume = {39},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_39_2_a0/}
}
TY - JOUR AU - V. G. Mikhailov TI - Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups JO - Sbornik. Mathematics PY - 1981 SP - 145 EP - 167 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1981_39_2_a0/ LA - en ID - SM_1981_39_2_a0 ER -
V. G. Mikhailov. Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups. Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 145-167. http://geodesic.mathdoc.fr/item/SM_1981_39_2_a0/
[1] V. F. Kolchin, B. A. Sevastyanov, V. P. Chistyakov, Sluchainye razmescheniya, izd-vo “Nauka”, Moskva, 1976 | MR
[2] B. A. Sevastyanov, “Predelnye teoremy v odnoi skheme razmescheniya chastits po yacheikam”, Teoriya veroyatn., XI:4 (1966), 696–700 | MR | Zbl
[3] V. G. Mikhailov, “Asimptoticheskaya normalnost chisla pustykh yacheek pri razmeschenii chastits komplektami”, Teoriya veroyatn., XXV:1 (1980), 83–91 | MR | Zbl
[4] V. N. Sachkov, Kombinatornye metody diskretnoi matematiki, izd-vo “Nauka”, Moskva, 1977