Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups
Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 145-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author proves the asymptotic normality of the random variables $\mu_r$ and linear combinations of them in an equiprobable scheme of distributing particles by groups. Bibliography: 4 titles.
@article{SM_1981_39_2_a0,
     author = {V. G. Mikhailov},
     title = {Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups},
     journal = {Sbornik. Mathematics},
     pages = {145--167},
     year = {1981},
     volume = {39},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_2_a0/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 145
EP  - 167
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_2_a0/
LA  - en
ID  - SM_1981_39_2_a0
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups
%J Sbornik. Mathematics
%D 1981
%P 145-167
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_39_2_a0/
%G en
%F SM_1981_39_2_a0
V. G. Mikhailov. Convergence to the multidimensional normal law in an equiprobable scheme of distributing particles by groups. Sbornik. Mathematics, Tome 39 (1981) no. 2, pp. 145-167. http://geodesic.mathdoc.fr/item/SM_1981_39_2_a0/

[1] V. F. Kolchin, B. A. Sevastyanov, V. P. Chistyakov, Sluchainye razmescheniya, izd-vo “Nauka”, Moskva, 1976 | MR

[2] B. A. Sevastyanov, “Predelnye teoremy v odnoi skheme razmescheniya chastits po yacheikam”, Teoriya veroyatn., XI:4 (1966), 696–700 | MR | Zbl

[3] V. G. Mikhailov, “Asimptoticheskaya normalnost chisla pustykh yacheek pri razmeschenii chastits komplektami”, Teoriya veroyatn., XXV:1 (1980), 83–91 | MR | Zbl

[4] V. N. Sachkov, Kombinatornye metody diskretnoi matematiki, izd-vo “Nauka”, Moskva, 1977