On the elementary theory of an almost polycyclic group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 125-132
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the elementary theory of an almost polycyclic group is decidable if and only if this group is almost abelian. This generalizes the corresponding assertion on a finitely generated nilpotent group, proved earlier by Yu. L. Ershov.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1981_39_1_a5,
     author = {N. S. Romanovskii},
     title = {On the elementary theory of an almost polycyclic group},
     journal = {Sbornik. Mathematics},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/}
}
                      
                      
                    N. S. Romanovskii. On the elementary theory of an almost polycyclic group. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/
