On the elementary theory of an almost polycyclic group
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 125-132

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the elementary theory of an almost polycyclic group is decidable if and only if this group is almost abelian. This generalizes the corresponding assertion on a finitely generated nilpotent group, proved earlier by Yu. L. Ershov. Bibliography: 6 titles.
@article{SM_1981_39_1_a5,
     author = {N. S. Romanovskii},
     title = {On the elementary theory of an almost polycyclic group},
     journal = {Sbornik. Mathematics},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - On the elementary theory of an almost polycyclic group
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 125
EP  - 132
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/
LA  - en
ID  - SM_1981_39_1_a5
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T On the elementary theory of an almost polycyclic group
%J Sbornik. Mathematics
%D 1981
%P 125-132
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/
%G en
%F SM_1981_39_1_a5
N. S. Romanovskii. On the elementary theory of an almost polycyclic group. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/