On the elementary theory of an almost polycyclic group
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 125-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the elementary theory of an almost polycyclic group is decidable if and only if this group is almost abelian. This generalizes the corresponding assertion on a finitely generated nilpotent group, proved earlier by Yu. L. Ershov. Bibliography: 6 titles.
@article{SM_1981_39_1_a5,
     author = {N. S. Romanovskii},
     title = {On the elementary theory of an almost polycyclic group},
     journal = {Sbornik. Mathematics},
     pages = {125--132},
     year = {1981},
     volume = {39},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - On the elementary theory of an almost polycyclic group
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 125
EP  - 132
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/
LA  - en
ID  - SM_1981_39_1_a5
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T On the elementary theory of an almost polycyclic group
%J Sbornik. Mathematics
%D 1981
%P 125-132
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/
%G en
%F SM_1981_39_1_a5
N. S. Romanovskii. On the elementary theory of an almost polycyclic group. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a5/

[1] M. I. Kargopolov, V. N. Remeslennikov, N. S. Romanovskii, V. A. Romankov, V. A. Churkin, “Algoritmicheskie problemy dlya $\mathcal O$-stepennykh grupp”, Algebra i logika, 8:6 (1969), 643–659 | MR

[2] Yu. L. Ershov, “Ob elementarnykh teoriyakh grupp”, DAN SSSR, 203:6 (1972), 1240–1243 | Zbl

[3] Yu. L. Ershov, “Nerazreshimost nekotorykh polei”, DAN SSSR, 161:1 (1965), 27–29 | Zbl

[4] R. Robinson, “Undecidable rings”, Trans. Amer. Math. Soc., 70:1 (1951), 137–159 | DOI | MR | Zbl

[5] J. Robinson, “The undecidability of algebraic rings and fields”, Proc. Amer. Math. Soc., 10:6 (1959), 950–957 | DOI | MR | Zbl

[6] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, izd-vo “Nauka”, Moskva, 1972 | MR