Stabilization of solutions of the third mixed problem for a~second order parabolic equation in a~noncylindrical domain
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 87-105
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies the behavior for large values of time $t$ of the solution of the third mixed problem in a noncylindrical domain $D\subset\mathbf R^{n+1}$ that expands as $t$ increases, for a linear second order parabolic equation in selfadjoint form without lower terms. In this connection the boundary condition is chosen so that the “energy conservation law” holds. For a very large class of domains a simple geometric characteristic of the domain is singled out-the function $V(t,\sqrt t)=\operatorname{mes}_n(D_t\cap\{|x|\sqrt t\})$, where $D_t$ is the intersection of the domain $D$ with the hyperplane $t=\operatorname{const}$ – determining the stabilization speed of the solution. Namely, it is proved that a solution $u(t,x)$ of the above problem with initial function $\varphi$ from $L_1(D_0)$ satisfies the estimate
$$
\|u(t,x)\|_{L_\infty(D_t)}\leqslant\frac C{V(t,\sqrt t)}\|\varphi\|_{L_1(D_0)},\qquad t>0,
$$
and the accuracy of this estimate is of the order of the convergence to zero as $t\to\infty$.
Bibliography: 6 titles.
@article{SM_1981_39_1_a3,
author = {V. I. Ushakov},
title = {Stabilization of solutions of the third mixed problem for a~second order parabolic equation in a~noncylindrical domain},
journal = {Sbornik. Mathematics},
pages = {87--105},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a3/}
}
TY - JOUR AU - V. I. Ushakov TI - Stabilization of solutions of the third mixed problem for a~second order parabolic equation in a~noncylindrical domain JO - Sbornik. Mathematics PY - 1981 SP - 87 EP - 105 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a3/ LA - en ID - SM_1981_39_1_a3 ER -
V. I. Ushakov. Stabilization of solutions of the third mixed problem for a~second order parabolic equation in a~noncylindrical domain. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 87-105. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a3/