Holomorphic inequivalence of some classes of domains in $\mathbf C^n$
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 61-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article proves the biholomorphic inequivalence of some classes of domains in $\mathbf C^n$: in particular, bounded pseudoconvex domains with smooth and piecewise smooth (but not smooth) boundaries. It is shown that a proper holomorphic mapping of one strictly pseudoconvex domain onto another is locally biholomorphic. Bibliography: 20 titles.
@article{SM_1981_39_1_a2,
     author = {S. I. Pinchuk},
     title = {Holomorphic inequivalence of some classes of domains in~$\mathbf C^n$},
     journal = {Sbornik. Mathematics},
     pages = {61--86},
     year = {1981},
     volume = {39},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a2/}
}
TY  - JOUR
AU  - S. I. Pinchuk
TI  - Holomorphic inequivalence of some classes of domains in $\mathbf C^n$
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 61
EP  - 86
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a2/
LA  - en
ID  - SM_1981_39_1_a2
ER  - 
%0 Journal Article
%A S. I. Pinchuk
%T Holomorphic inequivalence of some classes of domains in $\mathbf C^n$
%J Sbornik. Mathematics
%D 1981
%P 61-86
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_39_1_a2/
%G en
%F SM_1981_39_1_a2
S. I. Pinchuk. Holomorphic inequivalence of some classes of domains in $\mathbf C^n$. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 61-86. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a2/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, izd-vo “Nauka”, Moskva, 1966 | MR

[2] G. M. Khenkin, “Analiticheskii poliedr golomorfno ne ekvivalenten strogo psevdovypukloi oblasti”, DAN SSSR, 210:5 (1973), 1026–1029 | Zbl

[3] C. Fefferman, “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. Math., 26 (1974), 1–65 | DOI | MR | Zbl

[4] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR

[5] N. Tanaka, “On generalized graded Lie algebras and geometric structures. I”, J. Math. Soc. Japan, 19 (1967), 215–254 | MR | Zbl

[6] D. Burns Jr., S. Shnider, “Real hypersurfaces in complex manifolds”, Proc. Sympos. Pure Math., 30:2 (1977), 141–168 | MR | Zbl

[7] D. Burs Jr., S. Shnider, R. O. Wells Jr., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46 (1978), 237–253 | DOI | MR

[8] S. Webster, “On the mapping problem for algebraic real hypersurfaces”, Invent. Math., 43 (1977), 53–68 | DOI | MR | Zbl

[9] H. Alexander, “Proper holomorphic maps in $\mathbf C^n$”, Indiana Univ. Math. J., 26 (1977), 137–146 | DOI | MR | Zbl

[10] S. I. Pinchuk, “Sobstvennye golomorfnye otobrazheniya strogo psevdovypuklykh oblastei”, DAN SSSR, 241:1 (1978), 30–33 | MR | Zbl

[11] S. I. Pinchuk, “Granichnaya teorema edinstvennosti dlya golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Matem. zametki, 15:2 (1974), 205–212 | Zbl

[12] S. I. Pinchuk, “O sobstvennykh golomorfnykh otobrazheniyakh strogo psevdovypuklykh oblastei”, Sib. matem. zh., 15:4 (1974), 909–917 | MR | Zbl

[13] B. V. Shabat, Vvedenie v kompleksnyi analiz, t. 1, izd-vo “Nauka”, Moskva, 1976 | MR

[14] G. M. Khenkin, E. M. Chirka, “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki, 4, VINITI, Moskva, 1975, 13–142

[15] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, izd-vo “Nauka”, Moskva, 1964 | MR

[16] L. Khermander, “Otsenki v $L^2$ i teoremy suschestvovaniya dlya operatora $\partial$”, Matematika, 10:2 (1966), 59–116

[17] K. Diederich, J. Fornaess, “Pseudoconvex domains: bounded strictly plurisubharmonic exaustion functions”, Invent. Math., 39:2 (1977), 129–141 | DOI | MR | Zbl

[18] B. N. Khimchenko, “O povedenii supergarmonicheskoi funktsii vblizi granitsy oblasti tipa $A^{(1)}$”, Diff. uravneniya, 1:10 (1969), 1845–1853

[19] J. Fornaess, “Embedding strictly pseudoconvex domains in convex domains”, Amer. J. Math., 98:1 (1976), 529–569 | DOI | MR | Zbl

[20] P. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, izd-vo “Mir”, Moskva, 1969 | MR