On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 37-60
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A theorem of Phragmén-Lindelöf type is established for subsolutions of second order quasilinear equations of elliptic type, given in divergence form. Asymptotic properties of entire subsolutions are studied and the results are applied to mappings with bounded distortion.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1981_39_1_a1,
     author = {V. M. Miklyukov},
     title = {On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion},
     journal = {Sbornik. Mathematics},
     pages = {37--60},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/}
}
                      
                      
                    TY - JOUR AU - V. M. Miklyukov TI - On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion JO - Sbornik. Mathematics PY - 1981 SP - 37 EP - 60 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/ LA - en ID - SM_1981_39_1_a1 ER -
%0 Journal Article %A V. M. Miklyukov %T On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion %J Sbornik. Mathematics %D 1981 %P 37-60 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/ %G en %F SM_1981_39_1_a1
V. M. Miklyukov. On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 37-60. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/
