@article{SM_1981_39_1_a1,
author = {V. M. Miklyukov},
title = {On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion},
journal = {Sbornik. Mathematics},
pages = {37--60},
year = {1981},
volume = {39},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/}
}
TY - JOUR AU - V. M. Miklyukov TI - On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion JO - Sbornik. Mathematics PY - 1981 SP - 37 EP - 60 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/ LA - en ID - SM_1981_39_1_a1 ER -
V. M. Miklyukov. On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 37-60. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/
[1] P. D. Lax, “A Phragmen–Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations”, Comm. Pure Appl. Math., 10:3 (1957), 361–389 | DOI | MR | Zbl
[2] M. A. Evgrafov, “Struktura reshenii eksponentsialnogo rosta dlya nekotorykh operatornykh uravnenii”, Trudy matem. in-ta im. V. A. Steklova, LX (1961), 145–180 | MR
[3] E. M. Landis, “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka (sluchai mnogikh nezavisimykh peremennykh)”, Uspekhi matem. nauk, XVIII:1(109) (1963), 3–62 | MR
[4] V. G. Mazya, “O povedenii vblizi granitsy resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v divergentnoi forme”, Matem. zametki, 2:2 (1967), 209–220 | MR | Zbl
[5] O. A. Oleinik, E. V. Radkevich, “Analitichnost i teoremy tipa Liuvillya i Fragmena–Lindelëfa dlya obschikh ellipticheskikh sistem differentsialnykh uravnenii”, Matem. sb., 95(137) (1974), 130–145 | MR | Zbl
[6] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, izd-vo “Nauka”, Moskva, 1970 | MR
[7] G. Polia i G. Segë, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, Moskva, 1962 | MR
[8] G. Federer i U. X. Fleming, “Normalnye i tselochislennye potoki”, Tselochislennye potoki i minimalnye poverkhnosti, izd-vo “Mir”, Moskva, 1973
[9] F. W. Gehring, “Inequalities for condensers, hyperbolic capacity and extremal lengths”, Mich. Math. J., 18:1 (1971), 1–20 | DOI | MR | Zbl
[10] H. Federer, Geometric measure theory, Springer-Veiiag, Berlin, 1969 | MR
[11] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, IL, Moskva, 1948
[12] Yu. G. Reshetnyak, “Lokalnaya struktura otobrazhenii s ogranichennym iskazheniem”, Sib. matem. zh., X:6 (1969), 1311–1333
[13] Yu. G. Reshetnyak, “Ob uslovii ogranichennosti indeksa dlya otobrazhenii s ogranichennym iskazheniem”, Sib. mat. zh., IX:2 (1968), 368–374 | MR
[14] Yu. G. Reshetnyak, “Ob ekstremalnykh svoistvakh otobrazhenii s ogranichennym iskazheniem”, Sib. matem. zh., X:6 (1969), 1300–1310
[15] J. Deny, P. Lelong, “Sur une généralisation de l'indicatrice de Phragmén–Lindelöf”, C. r. Acad. scient., Paris, 224(1947), 1046–1048 | MR | Zbl