On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 37-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theorem of Phragmén-Lindelöf type is established for subsolutions of second order quasilinear equations of elliptic type, given in divergence form. Asymptotic properties of entire subsolutions are studied and the results are applied to mappings with bounded distortion. Bibliography: 15 titles.
@article{SM_1981_39_1_a1,
     author = {V. M. Miklyukov},
     title = {On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion},
     journal = {Sbornik. Mathematics},
     pages = {37--60},
     year = {1981},
     volume = {39},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 37
EP  - 60
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/
LA  - en
ID  - SM_1981_39_1_a1
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion
%J Sbornik. Mathematics
%D 1981
%P 37-60
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/
%G en
%F SM_1981_39_1_a1
V. M. Miklyukov. On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 37-60. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a1/

[1] P. D. Lax, “A Phragmen–Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations”, Comm. Pure Appl. Math., 10:3 (1957), 361–389 | DOI | MR | Zbl

[2] M. A. Evgrafov, “Struktura reshenii eksponentsialnogo rosta dlya nekotorykh operatornykh uravnenii”, Trudy matem. in-ta im. V. A. Steklova, LX (1961), 145–180 | MR

[3] E. M. Landis, “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka (sluchai mnogikh nezavisimykh peremennykh)”, Uspekhi matem. nauk, XVIII:1(109) (1963), 3–62 | MR

[4] V. G. Mazya, “O povedenii vblizi granitsy resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v divergentnoi forme”, Matem. zametki, 2:2 (1967), 209–220 | MR | Zbl

[5] O. A. Oleinik, E. V. Radkevich, “Analitichnost i teoremy tipa Liuvillya i Fragmena–Lindelëfa dlya obschikh ellipticheskikh sistem differentsialnykh uravnenii”, Matem. sb., 95(137) (1974), 130–145 | MR | Zbl

[6] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, izd-vo “Nauka”, Moskva, 1970 | MR

[7] G. Polia i G. Segë, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, Moskva, 1962 | MR

[8] G. Federer i U. X. Fleming, “Normalnye i tselochislennye potoki”, Tselochislennye potoki i minimalnye poverkhnosti, izd-vo “Mir”, Moskva, 1973

[9] F. W. Gehring, “Inequalities for condensers, hyperbolic capacity and extremal lengths”, Mich. Math. J., 18:1 (1971), 1–20 | DOI | MR | Zbl

[10] H. Federer, Geometric measure theory, Springer-Veiiag, Berlin, 1969 | MR

[11] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, IL, Moskva, 1948

[12] Yu. G. Reshetnyak, “Lokalnaya struktura otobrazhenii s ogranichennym iskazheniem”, Sib. matem. zh., X:6 (1969), 1311–1333

[13] Yu. G. Reshetnyak, “Ob uslovii ogranichennosti indeksa dlya otobrazhenii s ogranichennym iskazheniem”, Sib. mat. zh., IX:2 (1968), 368–374 | MR

[14] Yu. G. Reshetnyak, “Ob ekstremalnykh svoistvakh otobrazhenii s ogranichennym iskazheniem”, Sib. matem. zh., X:6 (1969), 1300–1310

[15] J. Deny, P. Lelong, “Sur une généralisation de l'indicatrice de Phragmén–Lindelöf”, C. r. Acad. scient., Paris, 224(1947), 1046–1048 | MR | Zbl