@article{SM_1981_38_4_a5,
author = {V. I. Yanchevskii},
title = {Reduced unitary $K$-theory. {Aplications} to algebraic groups},
journal = {Sbornik. Mathematics},
pages = {533--548},
year = {1981},
volume = {38},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_4_a5/}
}
V. I. Yanchevskii. Reduced unitary $K$-theory. Aplications to algebraic groups. Sbornik. Mathematics, Tome 38 (1981) no. 4, pp. 533-548. http://geodesic.mathdoc.fr/item/SM_1981_38_4_a5/
[1] V. P. Platonov, “Problema Tankaka–Artina i privedennaya $K$-teoriya”, Izv. AN SSSR, seriya matem., 40 (1976), 227–260 | MR
[2] V. P. Platonov, “Privedennaya $K$-teoriya i approksimatsiya v algebraicheskikh gruppakh”, Trudy Matem. in-ta im. V. A. Steklova, CXLII (1976), 198–207 | MR
[3] V. P. Platonov, “Algebraic groups and reduced $K$-theory”, Proc. Internat. Congress Math., Helsinki, 1978
[4] V. P. Platonov, “Biratsionalnye svoistva privedennoi gruppy Uaitkheda”, DAN BSSR, 21:3 (1977), 197–198 | MR
[5] V. I. Yanchevskii, “Privedennaya unitarnaya $K$-teoriya i tela nad genzelevymi diskretno normirovannymi polyami”, Izv. AN SSSR, seriya matem., 42 (1978), 879–918 | MR
[6] V. P. Platonov, V. I. Yanchevskii, “O stabilnosti v privedennoi $K$-teorii”, DAN SSSR, 242:4 (1978), 769–772 | MR | Zbl
[7] V. P. Platonov, “Beskonechnost privedennoi gruppy Uaitkheda v probleme Tannaka–Artina”, Matem. sb., 100(142) (1976), 191–200 | MR | Zbl
[8] V. I. Yanchevskii, “Obratnaya zadacha privedennoi unitarnoi $K$-teorii”, Matem. zametki, 26:3 (1979), 475–482 | MR | Zbl
[9] M. Kneser, In Coll. Theorie des groupes algebriques, Bruxelles, 1962
[10] G. E. Wall, “The structure of a unitary factor group”, Publ. Math. IHES, 1:3 (1959) | MR
[11] V. E. Voskresenskii, “O privedennoi gruppe Uaitkheda prostoi algebry”, Uspekhi matem. nauk, XXVI:6(162) (1978), 247–248 | MR
[12] N. Dzhekobson, Teoriya kolets, IL, Moskva, 1949
[13] C. Riehm, “The congruence subgroup problem over local fields”, Amer. J. Math., 92:3 (1970), 771–778 | DOI | MR | Zbl
[14] S. Wang, “On Grunwald's theorem”, Ann. Math., 51:2 (1950), 471–484 | DOI | MR | Zbl