A sufficient condition for closed classes of $k$-valued logic to have only trivial congruences
Sbornik. Mathematics, Tome 38 (1981) no. 4, pp. 507-532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author obtains a classification of $M$-classes of closed classes of $k$-valued logic that are minimal (with respect to inclusion) relative to the property “all superclasses have only trivial congruences”, and an algorithm for constructing $M$-classes is proposed. On the basis of a description of $M$-classes, a sufficient condition is obtained for triviality of congruences of closed classes of $k$-valued logic. Bibliography: 11 titles.
@article{SM_1981_38_4_a4,
     author = {V. V. Gorlov},
     title = {A~sufficient condition for closed classes of $k$-valued logic to have only trivial congruences},
     journal = {Sbornik. Mathematics},
     pages = {507--532},
     year = {1981},
     volume = {38},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_4_a4/}
}
TY  - JOUR
AU  - V. V. Gorlov
TI  - A sufficient condition for closed classes of $k$-valued logic to have only trivial congruences
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 507
EP  - 532
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_4_a4/
LA  - en
ID  - SM_1981_38_4_a4
ER  - 
%0 Journal Article
%A V. V. Gorlov
%T A sufficient condition for closed classes of $k$-valued logic to have only trivial congruences
%J Sbornik. Mathematics
%D 1981
%P 507-532
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1981_38_4_a4/
%G en
%F SM_1981_38_4_a4
V. V. Gorlov. A sufficient condition for closed classes of $k$-valued logic to have only trivial congruences. Sbornik. Mathematics, Tome 38 (1981) no. 4, pp. 507-532. http://geodesic.mathdoc.fr/item/SM_1981_38_4_a4/

[1] V. V. Gorlov, “O kongruentsiyakh na zamknutykh klassakh Posta”, Matem. zametki, 13:5 (1973), 725–734 | MR | Zbl

[2] V. V. Gorlov, “O zamknutykh klassakh $k$-znachnoi logiki, vse kongruentsii kotorykh trivialny”, Matem. zametki, 22:4 (1977), 499–509 | MR | Zbl

[3] V. V. Gorlov, “O zamknutykh klassakh $k$-znachnoi logiki, vse nadklassy kotorykh imeyut tolko trivialnye kongruentsii”, DAN SSSR, 234:2 (1977), 273–276 | MR | Zbl

[4] V. I. Kolpakov, “Podalgebry monotonnykh funktsii algebr Posta”, Diskretnyi analiz, no. 24, 1974, 30–45 | MR | Zbl

[5] A. I. Maltsev, “Iterativnye algebry i mnogoobraziya Posta”, Algebra i logika, 5:2 (1966), 5–24 | MR

[6] A. I. Maltsev, “Kongruentsii i avtomorfizmy na kletkakh algebr Posta”, Algebra i logika, 11:6 (1972), 666–672

[7] A. I. Maltsev, “O kongruentsiyakh na podalgebrakh iterativnykh algebr Posta”, Diskretnyi analiz, no. 29, 1976, 39–52

[8] S. V. Yablonskii, “Funktsionalnye postroeniya v $k$-znachnoi logike”, Trudy Matem. in-ta im. V. A. Steklova, LI (1958), 5–142

[9] S. V. Yablonskii, “O stroenii verkhnei okrestnosti predikatno-opisuemykh klassov v $P_k$”, DAN SSSR, 218:2 (1974), 304–307 | Zbl

[10] D. Lau, “Kongruenzen auf gewissen Teilklassen von $P_{k,l}$”, Rostok Math. Kolloq., 1977, no. 3, 37–43 | MR | Zbl

[11] E. L. Post, “The two-valued iterative systems of mathematical logic”, Ann. Math. Studies, vol. 5, Princeton Univ. Press, Princeton, 1941 | MR | Zbl