Continuous bendings of convex surfaces with boundary conditions
Sbornik. Mathematics, Tome 38 (1981) no. 4, pp. 453-463
Cet article a éte moissonné depuis la source Math-Net.Ru
The author studies continuous bendings of simply connected surfaces of positive curvature, of class $C^{3,\nu}$, $0<\nu<1$, with boundary of class $C^{3,\nu}$, $0<\nu<1$, under exterior connections on the boundary (the generalized sliding condition, sleeve connections, etc.). A class of exterior connections compatible with continuous bendings of these surfaces is indicated. Bibliography: 3 titles.
@article{SM_1981_38_4_a1,
author = {V. T. Fomenko},
title = {Continuous bendings of convex surfaces with boundary conditions},
journal = {Sbornik. Mathematics},
pages = {453--463},
year = {1981},
volume = {38},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_4_a1/}
}
V. T. Fomenko. Continuous bendings of convex surfaces with boundary conditions. Sbornik. Mathematics, Tome 38 (1981) no. 4, pp. 453-463. http://geodesic.mathdoc.fr/item/SM_1981_38_4_a1/
[1] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, Moskva, 1959 | MR
[2] I. X. Sabitov, “Beskonechno malye izgibaniya vypukloi poverkhnosti s kraevym usloviem obobschennogo skolzheniya”, DAN SSSR, 147:4 (1962), 793–796 | MR | Zbl
[3] V. T. Fomenko, “Nekotorye rezultaty teorii beskonechno malykh izgibanii poverkhnostei”, Matem. sb., 72(114) (1967), 388–411 | MR | Zbl