The structure of semiperfect rings with commutative Jacobson radical
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 427-436
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a semiperfect ring with commutative Jacobson radical $J(R)$, and let
$R/J(R)\cong\prod_{i=1}^tL_i$, where the $L_i$ are the full matrix rings over skew fields $D_i$. In this article we prove theorems which enable us to reduce the study of the structure of $R$ to the study of the structure of local commutative rings for which each $D_i$ is a field which is a finite Galois extension of its prime subfield.
Bibliography: 7 titles.
@article{SM_1981_38_3_a7,
author = {V. A. Ratinov},
title = {The structure of semiperfect rings with commutative {Jacobson} radical},
journal = {Sbornik. Mathematics},
pages = {427--436},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a7/}
}
V. A. Ratinov. The structure of semiperfect rings with commutative Jacobson radical. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 427-436. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a7/