The structure of semiperfect rings with commutative Jacobson radical
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 427-436
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R$ be a semiperfect ring with commutative Jacobson radical $J(R)$, and let $R/J(R)\cong\prod_{i=1}^tL_i$, where the $L_i$ are the full matrix rings over skew fields $D_i$. In this article we prove theorems which enable us to reduce the study of the structure of $R$ to the study of the structure of local commutative rings for which each $D_i$ is a field which is a finite Galois extension of its prime subfield. Bibliography: 7 titles.
@article{SM_1981_38_3_a7,
author = {V. A. Ratinov},
title = {The structure of semiperfect rings with commutative {Jacobson} radical},
journal = {Sbornik. Mathematics},
pages = {427--436},
year = {1981},
volume = {38},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a7/}
}
V. A. Ratinov. The structure of semiperfect rings with commutative Jacobson radical. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 427-436. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a7/
[1] W. K. Nicholson, “Semiperfect rings with abelian group of units”, Pacific J. Math., 49:1 (1973), 191–198 | MR | Zbl
[2] F. Bartolozzi, “Anneli artiniani con radicale a quadrato nullo”, Rend. Circ. mat. Palermo, 19:2 (1970), 113–122 | DOI | MR | Zbl
[3] R. Radgavendran, “Finite associative rings”, Compositio Math., 21:2 (1969), 195–229 | MR
[4] A. A. Nechaev, “Konechnye koltsa glavnykh idealov”, Matem. sb., 91(133) (1973), 350–366 | Zbl
[5] I. Lambek, Koltsa i moduli, izd-vo “Mir”, Moskva, 1971 | MR
[6] E. A. Behrens, Ring theory, Academic Press, New York–London, 1972 | MR
[7] S. Leng, Algebra, izd-vo “Mir”, Moskva, 1968