The structure of semiperfect rings with commutative Jacobson radical
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 427-436

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a semiperfect ring with commutative Jacobson radical $J(R)$, and let $R/J(R)\cong\prod_{i=1}^tL_i$, where the $L_i$ are the full matrix rings over skew fields $D_i$. In this article we prove theorems which enable us to reduce the study of the structure of $R$ to the study of the structure of local commutative rings for which each $D_i$ is a field which is a finite Galois extension of its prime subfield. Bibliography: 7 titles.
@article{SM_1981_38_3_a7,
     author = {V. A. Ratinov},
     title = {The structure of semiperfect rings with commutative {Jacobson} radical},
     journal = {Sbornik. Mathematics},
     pages = {427--436},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a7/}
}
TY  - JOUR
AU  - V. A. Ratinov
TI  - The structure of semiperfect rings with commutative Jacobson radical
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 427
EP  - 436
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a7/
LA  - en
ID  - SM_1981_38_3_a7
ER  - 
%0 Journal Article
%A V. A. Ratinov
%T The structure of semiperfect rings with commutative Jacobson radical
%J Sbornik. Mathematics
%D 1981
%P 427-436
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_38_3_a7/
%G en
%F SM_1981_38_3_a7
V. A. Ratinov. The structure of semiperfect rings with commutative Jacobson radical. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 427-436. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a7/