On a~homological characterization of a~certain class of local rings
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 421-425

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the nondegeneracy of the Yoneda product $\operatorname{Ext}_A^p(k,M)\times\operatorname{Ext}_A^{n-p}(M,k)$ ($M$ is either a noetherian module or a complex of finite projective dimension, and $k$ is the residue field) characterizes the regularity of the ring $A$, whereas the isomorphism $\operatorname{Ext}_A^p(k,M)\approx\operatorname{Ext}_A^{n-p} (M,k)$ characterizes the fact that $A$ is Gorenstein. Bibliography: 8 titles.
@article{SM_1981_38_3_a6,
     author = {A. F. Ivanov},
     title = {On a~homological characterization of a~certain class of local rings},
     journal = {Sbornik. Mathematics},
     pages = {421--425},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/}
}
TY  - JOUR
AU  - A. F. Ivanov
TI  - On a~homological characterization of a~certain class of local rings
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 421
EP  - 425
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/
LA  - en
ID  - SM_1981_38_3_a6
ER  - 
%0 Journal Article
%A A. F. Ivanov
%T On a~homological characterization of a~certain class of local rings
%J Sbornik. Mathematics
%D 1981
%P 421-425
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/
%G en
%F SM_1981_38_3_a6
A. F. Ivanov. On a~homological characterization of a~certain class of local rings. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 421-425. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/