On a~homological characterization of a~certain class of local rings
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 421-425
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the nondegeneracy of the Yoneda product
$\operatorname{Ext}_A^p(k,M)\times\operatorname{Ext}_A^{n-p}(M,k)$ ($M$ is either a noetherian module or a complex of finite projective dimension, and $k$ is the residue field) characterizes the regularity of the ring $A$, whereas the isomorphism $\operatorname{Ext}_A^p(k,M)\approx\operatorname{Ext}_A^{n-p} (M,k)$ characterizes the fact that $A$ is Gorenstein.
Bibliography: 8 titles.
@article{SM_1981_38_3_a6,
author = {A. F. Ivanov},
title = {On a~homological characterization of a~certain class of local rings},
journal = {Sbornik. Mathematics},
pages = {421--425},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/}
}
A. F. Ivanov. On a~homological characterization of a~certain class of local rings. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 421-425. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/