On a homological characterization of a certain class of local rings
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 421-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the nondegeneracy of the Yoneda product $\operatorname{Ext}_A^p(k,M)\times\operatorname{Ext}_A^{n-p}(M,k)$ ($M$ is either a noetherian module or a complex of finite projective dimension, and $k$ is the residue field) characterizes the regularity of the ring $A$, whereas the isomorphism $\operatorname{Ext}_A^p(k,M)\approx\operatorname{Ext}_A^{n-p} (M,k)$ characterizes the fact that $A$ is Gorenstein. Bibliography: 8 titles.
@article{SM_1981_38_3_a6,
     author = {A. F. Ivanov},
     title = {On a~homological characterization of a~certain class of local rings},
     journal = {Sbornik. Mathematics},
     pages = {421--425},
     year = {1981},
     volume = {38},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/}
}
TY  - JOUR
AU  - A. F. Ivanov
TI  - On a homological characterization of a certain class of local rings
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 421
EP  - 425
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/
LA  - en
ID  - SM_1981_38_3_a6
ER  - 
%0 Journal Article
%A A. F. Ivanov
%T On a homological characterization of a certain class of local rings
%J Sbornik. Mathematics
%D 1981
%P 421-425
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/
%G en
%F SM_1981_38_3_a6
A. F. Ivanov. On a homological characterization of a certain class of local rings. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 421-425. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a6/

[1] J.-P. Serre, “Algèbre locale”, Multiplicités, Lecture Notes in Math., no. 11, Springer-Verlag, 1965

[2] M. Auslander, D. A. Buchsbaum, “Homological dimension in local rings”, Trans. Arner. Math. Soc., 85:2 (1957), 390–405 | DOI | MR | Zbl

[3] R. Hartshorne, “Residues and duality”, Lecture Notes in Math., no. 20, Springer-Verlag, 1966 | MR | Zbl

[4] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, IL, Moskva, 1960

[5] H. Bass, “On the ubiquity of Gorenstein rings”, Math. Z., 22:1 (1963), 8–28 | DOI | MR

[6] S. Eilenberg, “Homological dimension and syzygies”, Ann. Math., 64:2 (1956), 328–336 | DOI | MR | Zbl

[7] J. Tate, “Homology of noetherian and local rings”, Illinois J. Math., 1:1 (1957), 14–27 | MR | Zbl

[8] S. Maklein, Gomologiya, izd-vo “Mir”, Moskva, 1966