On majorants of $D$-integrable functions
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 407-420

Voir la notice de l'article provenant de la source Math-Net.Ru

The following majorants are investigated for functions that are integrable in the Denjoy sense: a maximum function in the sense of Hardy and Littlewood; majorants for the conjugate-function operator and for the Hilbert operator. Results of the following kind are obtained: $$ |\{x\in P:M(x)>\lambda\}|\leqslant\frac C\lambda\biggl((L)\int_P|f|\,dt+\sum_i\omega\biggl(\int f;(a_i,b_i)\biggr)\biggr), $$ where $M$ is the majorant of $f$; $P$ is a closed set with complementary intervals $\{(a_i,b_i)\}$; and $\omega\bigl(\int f;(a_i,b_i)\bigr)$ is the oscillation of an indefinite integral of $f$ on $(a_i,b_i)$. Bibhography: 9 titles.
@article{SM_1981_38_3_a5,
     author = {T. P. Lukashenko},
     title = {On majorants of $D$-integrable functions},
     journal = {Sbornik. Mathematics},
     pages = {407--420},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a5/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - On majorants of $D$-integrable functions
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 407
EP  - 420
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a5/
LA  - en
ID  - SM_1981_38_3_a5
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T On majorants of $D$-integrable functions
%J Sbornik. Mathematics
%D 1981
%P 407-420
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_38_3_a5/
%G en
%F SM_1981_38_3_a5
T. P. Lukashenko. On majorants of $D$-integrable functions. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a5/