On majorants of $D$-integrable functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 407-420
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following majorants are investigated for functions that are integrable
in the Denjoy sense: a maximum function in the sense of Hardy and Littlewood;
majorants for the conjugate-function operator and for the Hilbert operator.
Results of the following kind are obtained:
$$
|\{x\in P:M(x)>\lambda\}|\leqslant\frac C\lambda\biggl((L)\int_P|f|\,dt+\sum_i\omega\biggl(\int f;(a_i,b_i)\biggr)\biggr),
$$
where $M$ is the majorant of $f$; $P$ is a closed set with complementary intervals $\{(a_i,b_i)\}$; and $\omega\bigl(\int f;(a_i,b_i)\bigr)$ is the oscillation of an indefinite integral of $f$ on $(a_i,b_i)$.
Bibhography: 9 titles.
			
            
            
            
          
        
      @article{SM_1981_38_3_a5,
     author = {T. P. Lukashenko},
     title = {On majorants of $D$-integrable functions},
     journal = {Sbornik. Mathematics},
     pages = {407--420},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a5/}
}
                      
                      
                    T. P. Lukashenko. On majorants of $D$-integrable functions. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a5/
