Limits of Banach spaces. Imbedding theorems. Applications to Sobolev spaces of infinite order
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 395-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a sequence of Banach spaces ${X_1}\supset{X_2}\supset\dotsb$, a concept of limit $X_\infty=\lim_{r\to\infty}X_r$ is introduced that is a natural generalization of the concept of the limit of a monotonically decreasing numerical sequence. Necessary and sufficient conditions are obtained for an imbedding $X_\infty\subset Y_\infty$ and for a compact imbedding. Applications are given to the Sobolev spaces of infinite order $W^\infty\{a_\alpha,p\}$. Necessary and sufficient conditions bearing an algebraic character are established for the imbedding $W^\infty\{a_\alpha,2\}(\mathbf R^\nu)\subset W^\infty\{b_\alpha,2\}(\mathbf R^\nu)$. Sufficient algebraic imbedding conditions are obtained for the spaces $W^\infty\{a_\alpha,p\}(\mathbf R^1)$ for any $p>1$. Bibliography: 8 titles.
@article{SM_1981_38_3_a4,
     author = {Yu. A. Dubinskii},
     title = {Limits of {Banach} spaces. {Imbedding} theorems. {Applications} to {Sobolev} spaces of infinite order},
     journal = {Sbornik. Mathematics},
     pages = {395--405},
     year = {1981},
     volume = {38},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a4/}
}
TY  - JOUR
AU  - Yu. A. Dubinskii
TI  - Limits of Banach spaces. Imbedding theorems. Applications to Sobolev spaces of infinite order
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 395
EP  - 405
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a4/
LA  - en
ID  - SM_1981_38_3_a4
ER  - 
%0 Journal Article
%A Yu. A. Dubinskii
%T Limits of Banach spaces. Imbedding theorems. Applications to Sobolev spaces of infinite order
%J Sbornik. Mathematics
%D 1981
%P 395-405
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1981_38_3_a4/
%G en
%F SM_1981_38_3_a4
Yu. A. Dubinskii. Limits of Banach spaces. Imbedding theorems. Applications to Sobolev spaces of infinite order. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 395-405. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a4/

[1] Yu. A. Dubinskii, “Prostranstva Soboleva beskonechnogo poryadka i povedenie reshenii nekotorykh kraevykh zadach pri neogranichennom vozrastanii poryadka uravneniya”, Matem. sb., 98(140) (1975), 163–184 | MR | Zbl

[2] Yu. A. Dubinskii, “Netrivialnost prostranstv Soboleva beskonechnogo poryadka v sluchae polnogo evklidova prostranstva i tora”, Matem. sb., 100(142) (1976), 436–446 | MR | Zbl

[3] Yu. A. Dubinskii, “O sledakh funktsii v prostranstvakh Soboleva beskonechnogo poryadka i neodnorodnykh kraevykh zadachakh”, DAN SSSR, 235:6 (1977), 1248–1252 | MR

[4] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo SO AN SSSR, Novosibirsk, 1962

[5] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, izd-vo “Nauka”, Moskva, 1975 | MR | Zbl

[6] B. V. Shabat, Vvedenie v kompleksnyi analiz, ch. 1, izd-vo “Nauka”, Moskva, 1975 | MR

[7] L. R. Volevich, B. P. Paneyakh, “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, Uspekhi matem. nauk, XX:1(121) (1965), 3–74

[8] S. Mandelbroit, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, Gostekhizdat, Moskva, 1955