Limits of Banach spaces. Imbedding theorems. Applications to Sobolev spaces of infinite order
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 395-405
Voir la notice de l'article provenant de la source Math-Net.Ru
For a sequence of Banach spaces ${X_1}\supset{X_2}\supset\dotsb$, a concept of limit $X_\infty=\lim_{r\to\infty}X_r$ is introduced that is a natural generalization of the concept of the limit of a monotonically decreasing numerical sequence. Necessary and sufficient conditions are obtained for an imbedding $X_\infty\subset Y_\infty$ and for a compact imbedding. Applications are given to the Sobolev spaces of infinite order $W^\infty\{a_\alpha,p\}$.
Necessary and sufficient conditions bearing an algebraic character are established for the imbedding $W^\infty\{a_\alpha,2\}(\mathbf R^\nu)\subset W^\infty\{b_\alpha,2\}(\mathbf R^\nu)$. Sufficient algebraic imbedding conditions are obtained for the spaces $W^\infty\{a_\alpha,p\}(\mathbf R^1)$ for any $p>1$.
Bibliography: 8 titles.
@article{SM_1981_38_3_a4,
author = {Yu. A. Dubinskii},
title = {Limits of {Banach} spaces. {Imbedding} theorems. {Applications} to {Sobolev} spaces of infinite order},
journal = {Sbornik. Mathematics},
pages = {395--405},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a4/}
}
TY - JOUR AU - Yu. A. Dubinskii TI - Limits of Banach spaces. Imbedding theorems. Applications to Sobolev spaces of infinite order JO - Sbornik. Mathematics PY - 1981 SP - 395 EP - 405 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a4/ LA - en ID - SM_1981_38_3_a4 ER -
Yu. A. Dubinskii. Limits of Banach spaces. Imbedding theorems. Applications to Sobolev spaces of infinite order. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 395-405. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a4/