Analytic properties of Euler products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 335-363
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove meromorphic continuation to the entire complex plane and derive a functional equation for the zeta-function $Z_F(s)$ corresponding to a Siegel modular form $F$ which is automorphic for the principal congruence-subgroup of level $q$ in the integral symplectic group $\operatorname{Sp}_2(\mathbf Z)$ of genus $2$ and is an eigenfunction for all of the Hecke operators $T_k(m)$ with index prime to $q$.
Bibliography: 9 titles.
@article{SM_1981_38_3_a1,
author = {S. A. Evdokimov},
title = {Analytic properties of {Euler} products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$},
journal = {Sbornik. Mathematics},
pages = {335--363},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a1/}
}
TY - JOUR
AU - S. A. Evdokimov
TI - Analytic properties of Euler products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$
JO - Sbornik. Mathematics
PY - 1981
SP - 335
EP - 363
VL - 38
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a1/
LA - en
ID - SM_1981_38_3_a1
ER -
S. A. Evdokimov. Analytic properties of Euler products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 335-363. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a1/