Analytic properties of Euler products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 335-363

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove meromorphic continuation to the entire complex plane and derive a functional equation for the zeta-function $Z_F(s)$ corresponding to a Siegel modular form $F$ which is automorphic for the principal congruence-subgroup of level $q$ in the integral symplectic group $\operatorname{Sp}_2(\mathbf Z)$ of genus $2$ and is an eigenfunction for all of the Hecke operators $T_k(m)$ with index prime to $q$. Bibliography: 9 titles.
@article{SM_1981_38_3_a1,
     author = {S. A. Evdokimov},
     title = {Analytic properties of {Euler} products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$},
     journal = {Sbornik. Mathematics},
     pages = {335--363},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a1/}
}
TY  - JOUR
AU  - S. A. Evdokimov
TI  - Analytic properties of Euler products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 335
EP  - 363
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a1/
LA  - en
ID  - SM_1981_38_3_a1
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%T Analytic properties of Euler products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$
%J Sbornik. Mathematics
%D 1981
%P 335-363
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_38_3_a1/
%G en
%F SM_1981_38_3_a1
S. A. Evdokimov. Analytic properties of Euler products for congruence-subgroups of $\operatorname{Sp}_2(\mathbf Z)$. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 335-363. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a1/