On Fourier integral operators
Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 293-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the stationary phase method for oscillatory integrals with complex phase function, the authors prove the coincidence of Fourier integral operators and Maslov's canonical operator. Bibliography: 17 titles.
@article{SM_1981_38_3_a0,
     author = {V. G. Danilov and Le Vu An'},
     title = {On {Fourier} integral operators},
     journal = {Sbornik. Mathematics},
     pages = {293--334},
     year = {1981},
     volume = {38},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_3_a0/}
}
TY  - JOUR
AU  - V. G. Danilov
AU  - Le Vu An'
TI  - On Fourier integral operators
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 293
EP  - 334
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_3_a0/
LA  - en
ID  - SM_1981_38_3_a0
ER  - 
%0 Journal Article
%A V. G. Danilov
%A Le Vu An'
%T On Fourier integral operators
%J Sbornik. Mathematics
%D 1981
%P 293-334
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1981_38_3_a0/
%G en
%F SM_1981_38_3_a0
V. G. Danilov; Le Vu An'. On Fourier integral operators. Sbornik. Mathematics, Tome 38 (1981) no. 3, pp. 293-334. http://geodesic.mathdoc.fr/item/SM_1981_38_3_a0/

[1] V. P. Maslov, Operatornye metody, izd-vo “Nauka”, Moskva, 1973 | MR

[2] L. Khërmander, “Integralnye operatory Fure”, Matematika, 16:1 (1972), 17–61 | Zbl

[3] V. P. Maslov, Operational Methods, Mir Publisher, Moscow, 1976 | MR | Zbl

[4] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Moskva, 1965

[5] V. G. Danilov, V. P. Maslov, “Kvaziobraschenie v teorii psevdodifferentsialnykh uravnenii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 6, VINITI, Moskva, 1976, 5–132 | MR

[6] J. J. Duistermaat, L. Hörmander, “Fourier integral operators. II”, Acta Math., 128 (1972), 183–269 | DOI | MR | Zbl

[7] A. Melin, J. Sjostrand, “Fourier integral operators with complex-valued phase functions”, Lecture Notes Math., 459 (1975), 121–223 | MR

[8] V. G. Danilov, Ob ogranichennosti psevdodifferentsialnykh operatorov v prostranstvakh Soboleva, Dep. VINITI, No 1383-74; Р. Ж. Математика, 1974, No 10

[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, izd-vo “Nauka”, Moskva, 1976 | MR

[10] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, Moskva, 1966

[11] V. I. Arnold, “Integraly bystro ostsilliruyuschikh funktsii i osobennosti proektsii lagranzhevykh mnogoobrazii”, Funkts. analiz, 6:3 (1972), 61–62 | MR | Zbl

[12] V. V. Kucherenko, “Uravnenie Gamiltona–Yakobi v kompleksnoi neanaliticheskoi situatsii”, DAN SSSR, 213:5 (1973), 1021–1024 | Zbl

[13] V. V. Kucherenko, “Kanonicheskii operator Maslova na rostke kompleksnogo pochti analiticheskogo mnogoobraziya”, DAN SSSR, 213:6 (1973), 1251–1254 | Zbl

[14] B. Yu. Sternin, V. E. Shatalov, “Gladkaya teoriya kanonicheskogo operatora Maslova na kompleksnom lagranzhevom rostke”, Uspekhi matem. nauk, XXIX:3(177) (1974), 229–230 | MR | Zbl

[15] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Metod kanonicheskogo operatora Maslova (kompleksnaya teoriya), izd-vo MIEM, Moskva, 1974

[16] A. G. Prudkovskii, “Metod statsionarnoi fazy v primenenii k integralam, zavisyaschim ot parametra (neanaliticheskii sluchai)”, ZhVMF, 14:2 (1974), 299–311 | MR | Zbl

[17] V. G. Danilov, “Otsenki dlya kanonicheskogo psevdodifferentsialnogo operatora s kompleksnoi fazoi”, DAN SSSR, 244:4 (1979), 800–804 | MR | Zbl