The fundamental groups of manifolds and Poincaré complexes
Sbornik. Mathematics, Tome 38 (1981) no. 2, pp. 255-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article the fundamental groups of $n$-dimensional manifolds and $n$-dimensional Poincaré; complexes with $[n/2]$-connected universal coverings are studied. Special attention is given to the case $n=3$: it is established that the fundamental groups of closed three-dimensional manifolds possess dual presentations in a certain sense, and purely algebraic conditions are found that are necessary and sufficient for a given group to be isomorphic to the fundamental group of some Poincaré; complex of formal dimension three. With the help of these conditions the symmetry of the Alexander invariants of finite Poincaré; complexes of formal dimension three is established. In the case $n\ne3$ analogous results are proved (the presentations of a group by generators and relations are replaced by segments of resolutions of the fundamental ideal of a group ring, and the Alexander invariants are replaced by their generalizations). Figures: 1. Bibliography: 18 titles.
@article{SM_1981_38_2_a6,
     author = {V. G. Turaev},
     title = {The fundamental groups of manifolds and {Poincar\'e} complexes},
     journal = {Sbornik. Mathematics},
     pages = {255--270},
     year = {1981},
     volume = {38},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_2_a6/}
}
TY  - JOUR
AU  - V. G. Turaev
TI  - The fundamental groups of manifolds and Poincaré complexes
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 255
EP  - 270
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_2_a6/
LA  - en
ID  - SM_1981_38_2_a6
ER  - 
%0 Journal Article
%A V. G. Turaev
%T The fundamental groups of manifolds and Poincaré complexes
%J Sbornik. Mathematics
%D 1981
%P 255-270
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_38_2_a6/
%G en
%F SM_1981_38_2_a6
V. G. Turaev. The fundamental groups of manifolds and Poincaré complexes. Sbornik. Mathematics, Tome 38 (1981) no. 2, pp. 255-270. http://geodesic.mathdoc.fr/item/SM_1981_38_2_a6/

[1] R. C. Blanchfield, “Intersection theory of manifolds with operators with applications to knot theory”, Ann. Math., 65:2 (1957), 340–356 | DOI | MR | Zbl

[2] E. Dyer, A. T. Vasquez, “Some properties of two-dimensional Poincaré duality groups”, Algebra, Topology and Category Theory, New York–San Francisco–London, 1976, 45–54 | MR | Zbl

[3] R. H. Fox, “Free differential calculus. II”, Ann. Math., 59:2 (1954), 196–210 | DOI | MR | Zbl

[4] J. Hempel, “$3$-manifolds”, Ann. Math. Stud., 86 (1976) | MR | Zbl

[5] F. E. A. Johnson, C. T. C. Wall, “On groups satisfying Poincaré duality”, Ann. Math., 96:3 (1972), 592–598 | DOI | MR | Zbl

[6] I. Madsen, C. B. Thomas, C. T. C. Wall, “The topological spherical space form problem. II. Existence of free actions”, Topology, 15:4 (1976), 375–382 | DOI | MR | Zbl

[7] J. W. Milnor, “A procedure for killing homotopy groups of differential manifolds”, Amer. Math. Soc. Symp. Pure Math., 3 (1961), 39–55 | MR | Zbl

[8] Dzh. Milnor, “Kruchenie Uaitkheda”, Matematika, 11:1 (1967), 3–42 | MR

[9] K. Rurk, B. Sanderson, Vvedenie v kusochno lineinuyu topologiyu, IL, Moskva, 1974

[10] S. Suzuki, “On linear graphs is $3$-sphere”, Osaka J. Math., 7 (1970), 375–396 | MR | Zbl

[11] R. G. Swan, “Periodic resolutions for finite groups”, Ann. Math., 72:2 (1960), 267–291 | DOI | MR | Zbl

[12] C. B. Thomas, “On Poincaré $3$-complexes with binary polyhedral fundamental group”, Math. Ann., 226:3 (1977), 207–221 | DOI | MR | Zbl

[13] G. Torres, R. H. Fox, “Dual presentations of the group of a knot”, Ann. Math., 59:2 (1954), 211–218 | DOI | MR | Zbl

[14] V. G. Turaev, “Krucheniya Reidemeistera i gruppovye invarianty trekhmernykh mnogoobrazii”, Zapiski nauchnykh seminarov LOMI, 66 (1976), 204–206 | MR | Zbl

[15] V. G. Turaev, “Peresechenie petel v dvumernykh mnogoobraziyakh”, Matem. sb., 106(148) (1978), 566–588 | MR | Zbl

[16] C. T. C. Wall, “Finiteness conditions for $CW$-complexes”, Ann. Math., 81:1 (1965), 56–69 | DOI | MR

[17] C. T. C. Wall, “Finiteness conditions for $CW$-complexes. II”, Proc. Royal. Soc., 295:1441 (1966), 129–139 | DOI | MR | Zbl

[18] C. T. C. Wall, “Poincaré complexes. I”, Ann. Math., 86:2 (1967), 213–245 | DOI | MR | Zbl