On convergence in the mean of Fourier series
Sbornik. Mathematics, Tome 38 (1981) no. 2, pp. 231-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various necessary and sufficient conditions are established for the convergence of the Fourier series of a function $f(x)\in L_{2\pi}$ in the norm of the space $L_{2\pi}$ (convergence in mean with exponent $1$). Bibliography: 16 titles.
@article{SM_1981_38_2_a4,
     author = {G. A. Fomin},
     title = {On convergence in the mean of {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {231--244},
     year = {1981},
     volume = {38},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_2_a4/}
}
TY  - JOUR
AU  - G. A. Fomin
TI  - On convergence in the mean of Fourier series
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 231
EP  - 244
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_2_a4/
LA  - en
ID  - SM_1981_38_2_a4
ER  - 
%0 Journal Article
%A G. A. Fomin
%T On convergence in the mean of Fourier series
%J Sbornik. Mathematics
%D 1981
%P 231-244
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_38_2_a4/
%G en
%F SM_1981_38_2_a4
G. A. Fomin. On convergence in the mean of Fourier series. Sbornik. Mathematics, Tome 38 (1981) no. 2, pp. 231-244. http://geodesic.mathdoc.fr/item/SM_1981_38_2_a4/

[1] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR

[2] A. N. Kolmogorov, “Sur l'ordre de grandeur des coefficients de la serie de Fourier-Lebesgue”, Bull. Acad. polon. Sci. (A), 1923, 83–86

[3] W. H. Young, “On the Fourier series of bounded functions”, Proc. London Math. Soc., (2)12:1 (1913), 41–70 | DOI | Zbl

[4] E. Hille, J. D. Tamarkin, “On the summability of Fourier series. II”, Ann. Math., (2)34:2 (1933), 329–348 | DOI | MR | Zbl

[5] S. A. Telyakovskii, “Otsenka normy funktsii cherez ee koeffitsienty Fure, udobnaya v zadachakh teorii approksimatsii”, Trudy Matem. in-ta imeni V. A. Steklova, CIX (1971), 65–97

[6] S. A. Telyakovskii, “K voprosu o skhodimosti ryadov Fure v metrike $L$”, Matem. zametki, 1:1 (1967), 91–98 | Zbl

[7] S. A. Telyakovskii, “Ob odnom dostatochnom uslovii Sidona integriruemosti trigonometricheskikh ryadov”, Matem. zametki, 14:3 (1973), 317–328

[8] G. A. Fomin, “Ob odnom klasse trigonometricheskikh ryadov”, Matem. zametki, 23:2 (1978), 213–222 | MR | Zbl

[9] A. Zigmund, Trigonometricheskie ryady, ONTI, Moskva–Leningrad, 1939

[10] G. A. Fomin, “O skhodimosti ryadov Fure v metrike $L$.”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Materialy konferentsii, Kalinin, 1970, 170–173

[11] S. A. Telyakovskii, G. A. Fomin, “O skhodimosti v metrike $L$ ryadov Fure s kvazimonotonnymi koeffitsientami”, Trudy Matem. in-ta im. V. A. Steklova, CXXXIV (1975), 310–313

[12] G. A. Fomin, “O nekotorykh usloviyakh skhodimosti ryadov Fure v metrike $L$”, Matem. zametki, 21:4 (1977), 587–592 | MR | Zbl

[13] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, Moskva, 1960

[14] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, Moskva, 1957 | MR

[15] G. A. Fomin, “O lineinykh metodakh summirovaniya ryadov Fure”, Matem. sb., 65(107) (1964), 144–152 | Zbl

[16] J. Ch. Vallee-Poussin, Leçons sur l'approximation des fonctions d'une variable reelle, Paris, 1919 | Zbl