On lacunae for some classes of equations with singularities
Sbornik. Mathematics, Tome 38 (1981) no. 2, pp. 217-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem is considered for equations which decompose into Euler–Poisson–Darboux factors. A representation of the solution of this problem is obtained in terms of spherical means of the initial function. This makes it possible both to establish precise conditions for classical solvability and to investigate the question of the presence of lacunae. We note that a special feature of this class of problems is the appearance of lacunae in even-dimensional space and the appreciable effect of the parameter in the Bessel operator on the smoothness of the initial data and the order of the lacunae obtained. Bibliography: 11 titles.
@article{SM_1981_38_2_a3,
     author = {I. A. Kipriyanov and L. A. Ivanov},
     title = {On lacunae for some classes of equations with singularities},
     journal = {Sbornik. Mathematics},
     pages = {217--230},
     year = {1981},
     volume = {38},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_2_a3/}
}
TY  - JOUR
AU  - I. A. Kipriyanov
AU  - L. A. Ivanov
TI  - On lacunae for some classes of equations with singularities
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 217
EP  - 230
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_2_a3/
LA  - en
ID  - SM_1981_38_2_a3
ER  - 
%0 Journal Article
%A I. A. Kipriyanov
%A L. A. Ivanov
%T On lacunae for some classes of equations with singularities
%J Sbornik. Mathematics
%D 1981
%P 217-230
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1981_38_2_a3/
%G en
%F SM_1981_38_2_a3
I. A. Kipriyanov; L. A. Ivanov. On lacunae for some classes of equations with singularities. Sbornik. Mathematics, Tome 38 (1981) no. 2, pp. 217-230. http://geodesic.mathdoc.fr/item/SM_1981_38_2_a3/

[1] I. G. Petrovskii, “O diffuzii voln i lakunakh dlya giperbolicheskikh uravnenii”, Matem. sb., 17(59) (1945), 289–370

[2] F. Ion, Ploskie volny i sfericheskie srednie v primenenii k uravneniyam s chastnymi proizvodnymi, IL, Moskva, 1958

[3] S. A. Galpern, V. E. Kondratov, “Zadacha Koshi dlya differentsialnykh operatorov, raspadayuschikhsya na volnovye mnozhiteli”, Trudy Mosk. matem. ob-va, 16 (1967), 107–136 | MR

[4] G. L. Chernyshev, Kandidatskaya dissertatsiya, Voronezh, 1972

[5] S. A. Tersenov, Vvedenie v teoriyu uravnenii, vyrozhdayuschikhsya po granitse, Novosibirsk, 1973

[6] I. A. Kipriyanov, “Otsenki v $L_{2,\nu}$ u reshenii kraevykh zadach dlya uravnenii v chastnykh proizvodnykh s differentsialnym operatorom Besselya”, Trudy Matem. in-ta im. V. A. Steklova, XCI (1967), 27–46

[7] L. A. Ivanov, “O lakunakh dlya operatorov, raspadayuschikhsya na mnozhiteli Eilera–Puassona–Darbu”, DAN SSSR, 233:4 (1977), 535–538 | MR | Zbl

[8] L. A. Ivanov, “O zadache Koshi dlya operatorov s osobennostyami, raspadayuschikhsya na mnozhiteli”, DAN SSSR, 234:3 (1977), 521–524 | MR | Zbl

[9] R. Kurant, Uravneniya s chastnymi proizvodnymi, izd-vo “Mir”, Moskva, 1964 | MR

[10] K. L. Stellmacher, “Eine Klasse huygenschen Differentialgleichung und ihre Integration”, Math. Ann., 130:3 (1955), 219–233 | DOI | MR | Zbl

[11] H. X. Ibragimov, E. V. Mamontov, “O zadache Koshi dlya uravneniya $u_{tt}-u_{xx}- -\sum a_{ij}(x-t)u_{y_iy_j}=0$”, Matem. sb., 102(144) (1977), 391–409 | MR | Zbl