The asymptotic expansion of the spectrum of a~Sturm--Liouville operator
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 127-141

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the properties of the spectrum of the problem \begin{gather*} -y''(x)+q(x)y(x)=\lambda y(x),\qquad x > 0,\\ y(0)=0,\quad y(x)\in L_2[0,\infty), \end{gather*} under the assumption that $q(x)$ grows like a power of $x$ at $\infty$, while allowing that $q(x)$ may have a nonintegrable singularity at $0$. A result which lets one write down the first few terms of an asymptotic series for the eigenvalues is obtained. Bibliography: 8 titles.
@article{SM_1981_38_1_a9,
     author = {Kh. Kh. Murtazin and T. G. Amangil'din},
     title = {The asymptotic expansion of the spectrum of {a~Sturm--Liouville} operator},
     journal = {Sbornik. Mathematics},
     pages = {127--141},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/}
}
TY  - JOUR
AU  - Kh. Kh. Murtazin
AU  - T. G. Amangil'din
TI  - The asymptotic expansion of the spectrum of a~Sturm--Liouville operator
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 127
EP  - 141
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/
LA  - en
ID  - SM_1981_38_1_a9
ER  - 
%0 Journal Article
%A Kh. Kh. Murtazin
%A T. G. Amangil'din
%T The asymptotic expansion of the spectrum of a~Sturm--Liouville operator
%J Sbornik. Mathematics
%D 1981
%P 127-141
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/
%G en
%F SM_1981_38_1_a9
Kh. Kh. Murtazin; T. G. Amangil'din. The asymptotic expansion of the spectrum of a~Sturm--Liouville operator. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 127-141. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/