The asymptotic expansion of the spectrum of a~Sturm--Liouville operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 127-141
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper studies the properties of the spectrum of the problem
\begin{gather*}
-y''(x)+q(x)y(x)=\lambda y(x),\qquad x > 0,\\
y(0)=0,\quad y(x)\in L_2[0,\infty),
\end{gather*}
under the assumption that $q(x)$ grows like a power of $x$ at $\infty$, while allowing that $q(x)$ may have a nonintegrable singularity at $0$. A result which lets one write down the first few terms of an asymptotic series for the eigenvalues is obtained.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1981_38_1_a9,
     author = {Kh. Kh. Murtazin and T. G. Amangil'din},
     title = {The asymptotic expansion of the spectrum of {a~Sturm--Liouville} operator},
     journal = {Sbornik. Mathematics},
     pages = {127--141},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/}
}
                      
                      
                    TY - JOUR AU - Kh. Kh. Murtazin AU - T. G. Amangil'din TI - The asymptotic expansion of the spectrum of a~Sturm--Liouville operator JO - Sbornik. Mathematics PY - 1981 SP - 127 EP - 141 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/ LA - en ID - SM_1981_38_1_a9 ER -
Kh. Kh. Murtazin; T. G. Amangil'din. The asymptotic expansion of the spectrum of a~Sturm--Liouville operator. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 127-141. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/
