The asymptotic expansion of the spectrum of a Sturm–Liouville operator
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 127-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the properties of the spectrum of the problem \begin{gather*} -y''(x)+q(x)y(x)=\lambda y(x),\qquad x > 0,\\ y(0)=0,\quad y(x)\in L_2[0,\infty), \end{gather*} under the assumption that $q(x)$ grows like a power of $x$ at $\infty$, while allowing that $q(x)$ may have a nonintegrable singularity at $0$. A result which lets one write down the first few terms of an asymptotic series for the eigenvalues is obtained. Bibliography: 8 titles.
@article{SM_1981_38_1_a9,
     author = {Kh. Kh. Murtazin and T. G. Amangil'din},
     title = {The asymptotic expansion of the spectrum of {a~Sturm{\textendash}Liouville} operator},
     journal = {Sbornik. Mathematics},
     pages = {127--141},
     year = {1981},
     volume = {38},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/}
}
TY  - JOUR
AU  - Kh. Kh. Murtazin
AU  - T. G. Amangil'din
TI  - The asymptotic expansion of the spectrum of a Sturm–Liouville operator
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 127
EP  - 141
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/
LA  - en
ID  - SM_1981_38_1_a9
ER  - 
%0 Journal Article
%A Kh. Kh. Murtazin
%A T. G. Amangil'din
%T The asymptotic expansion of the spectrum of a Sturm–Liouville operator
%J Sbornik. Mathematics
%D 1981
%P 127-141
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/
%G en
%F SM_1981_38_1_a9
Kh. Kh. Murtazin; T. G. Amangil'din. The asymptotic expansion of the spectrum of a Sturm–Liouville operator. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 127-141. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a9/

[1] M. Giertz, “On the solutions in $L_2(-\infty,\infty)$ of $y''+(\lambda-q(x))y=0$ when $q$ is rapidly increasing”, Proc. London Math. Sec. Ser. 3, 14:53 (1964), 53–73 | DOI | MR | Zbl

[2] V. I. Smirnov, Kurs vysshei matematiki, t. 3 (ch. 2), izd. 9-e, izd-vo “Nauka”, Moskva, 1974 | MR

[3] A. G. Alenitsyn, “Asimptotika spektra operatora Shturma–Liuvillya v sluchae predelnogo kruga”, Diff. uravneniya, 12:3 (1976), 428–437 | MR | Zbl

[4] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, izd-vo “Nauka”, Moskva, 1972 | MR

[5] G. B. Dvait, Tablitsy integralov i drugie matematicheskie formuly, izd-vo “Nauka”, Moskva, 1977

[6] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. 1, IL, Moskva, 1960

[7] L. A. Sakhnovich, “O spektre angarmonicheskogo ostsillyatora”, Izv. AN SSSR, seriya matem., 28 (1964), 1345–1362 | MR

[8] N. M. Kostenko, “Asimptotika sobstvennykh chisel angarmonicheskogo ostsillyatora”, Matem. sb., 81(123) (1970), 163–175 | MR | Zbl