Two theorems from the theory of periodic transformations
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 119-125
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ be a connected paracompact Hausdorff space, freely acted on by a cyclic group of prime order $p$ with generator $T$. Let $f\colon X\to M$ be a continuous mapping of $X$ into a topological manifold $M$ of dimension $m$. Put $A(f)=\{x\in X\mid f(x)=f(Tx)=\dots=f(T^{p-1}x)\}$. If $M$ is orientable over $\mathbf Z_p$, $\check H^i(X;\mathbf Z_p)=0$ for $0, and $f^*\colon\check H^m(M;\mathbf Z_p)\to\check H^m(X;\mathbf Z_p)$ has zero image, then, for $X$ weakly locally contractible, $\dim A(f)\geqslant n-m(p-1)$. If, in addition, $X$ is an $N$-dimensional topological manifold, then $\dim A(f)\geqslant N-m(p-1)$. For $p=2$, suppose $\check H^*(X;\mathbf Z_2)=H^*(S^n;\mathbf Z_2)$ and $\dim X\infty$, while $M$ is a connected compact closed manifold of dimension $n$ with a free involution $T'$. Let $A'(f)=\{x\in X \mid f(Tx)=T'f(x)\}$, and suppose $f^*\colon\check H^n(M;\mathbf Z_2)\to H^n(X;\mathbf Z_2)$ is a monomorphism. Then $A'(f)\ne\varnothing$. Bibliography: 5 titles.
@article{SM_1981_38_1_a8,
author = {A. Yu. Volovikov},
title = {Two theorems from the theory of periodic transformations},
journal = {Sbornik. Mathematics},
pages = {119--125},
year = {1981},
volume = {38},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a8/}
}
A. Yu. Volovikov. Two theorems from the theory of periodic transformations. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 119-125. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a8/
[1] J. Milnor, “Groups which act on $S^n$ without fixed points”, Amer. J. Math., 79 (1957), 623–630 | DOI | MR | Zbl
[2] H. J. Munkholm, “Borsuk–Ulam type theorems for proper $\mathbf Zp$-actions on (mod $p$ homology) $n$-spheres”, Math. Scand., 24:2 (1969), 167–185 | MR | Zbl
[3] M. Nakaoka, “Generalizations of Borsuk–Ulam theorem”, Osaka J. Math., 2 (1970), 423–441 | MR
[4] M. Nakaoka, “Note on a theorem due to Milnor”, Osaka J. Math., 2 (1970), 443–449 | MR
[5] A. Yu. Volovikov, “Obobschenie teoremy Borsuka–Ulama”, Matem. sb., 108(150) (1979), 212–218 | MR | Zbl