Analogues of Wiman's theorem for Dirichlet series
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 95-107
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies the classes of integral functions $f$ that are given by a Dirichlet series which converges absolutely in the whole plane and has nonnegative indices and are such that $\ln M(x)\sim\ln\mu(x)$ as $x\to\infty$ outside some exceptional set, where
$M(x)=\sup\{|f(x+iy)|:|y|\infty\}$ and $\mu(x)$ is the maximum term in the Dirichlet series.
Bibliography: 8 titles.
@article{SM_1981_38_1_a6,
author = {M. N. Sheremeta},
title = {Analogues of {Wiman's} theorem for {Dirichlet} series},
journal = {Sbornik. Mathematics},
pages = {95--107},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a6/}
}
M. N. Sheremeta. Analogues of Wiman's theorem for Dirichlet series. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a6/