Analogues of Wiman's theorem for Dirichlet series
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 95-107

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the classes of integral functions $f$ that are given by a Dirichlet series which converges absolutely in the whole plane and has nonnegative indices and are such that $\ln M(x)\sim\ln\mu(x)$ as $x\to\infty$ outside some exceptional set, where $M(x)=\sup\{|f(x+iy)|:|y|\infty\}$ and $\mu(x)$ is the maximum term in the Dirichlet series. Bibliography: 8 titles.
@article{SM_1981_38_1_a6,
     author = {M. N. Sheremeta},
     title = {Analogues of {Wiman's} theorem for {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a6/}
}
TY  - JOUR
AU  - M. N. Sheremeta
TI  - Analogues of Wiman's theorem for Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 95
EP  - 107
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_1_a6/
LA  - en
ID  - SM_1981_38_1_a6
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%T Analogues of Wiman's theorem for Dirichlet series
%J Sbornik. Mathematics
%D 1981
%P 95-107
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_38_1_a6/
%G en
%F SM_1981_38_1_a6
M. N. Sheremeta. Analogues of Wiman's theorem for Dirichlet series. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a6/