On elliptic curves over pseudolocal fields
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 83-94
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is shown that for pseudolocal fields there is a natural analog of the Tate–Shafarevich duality for elliptic curves, taking the following form:
Theorem. If $A$ is an elliptic curve defined over the pseudolocal field $k$, whose residue field has characteristic not equal to $2$ or $3$, then the Tate–Shafarevich pairing
$$
H^1(k,A)\times A_k\to Q/Z
$$
is left nondegenerate.
Bibliography: 11 titles.
@article{SM_1981_38_1_a5,
author = {V. I. Andriichuk},
title = {On elliptic curves over pseudolocal fields},
journal = {Sbornik. Mathematics},
pages = {83--94},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a5/}
}
V. I. Andriichuk. On elliptic curves over pseudolocal fields. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a5/