On elliptic curves over pseudolocal fields
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 83-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that for pseudolocal fields there is a natural analog of the Tate–Shafarevich duality for elliptic curves, taking the following form: Theorem. If $A$ is an elliptic curve defined over the pseudolocal field $k$, whose residue field has characteristic not equal to $2$ or $3$, then the Tate–Shafarevich pairing $$ H^1(k,A)\times A_k\to Q/Z $$ is left nondegenerate. Bibliography: 11 titles.
@article{SM_1981_38_1_a5,
     author = {V. I. Andriichuk},
     title = {On elliptic curves over pseudolocal fields},
     journal = {Sbornik. Mathematics},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a5/}
}
TY  - JOUR
AU  - V. I. Andriichuk
TI  - On elliptic curves over pseudolocal fields
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 83
EP  - 94
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_1_a5/
LA  - en
ID  - SM_1981_38_1_a5
ER  - 
%0 Journal Article
%A V. I. Andriichuk
%T On elliptic curves over pseudolocal fields
%J Sbornik. Mathematics
%D 1981
%P 83-94
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_38_1_a5/
%G en
%F SM_1981_38_1_a5
V. I. Andriichuk. On elliptic curves over pseudolocal fields. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a5/