On the product of two groups that are close to being nilpotent
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 47-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorem is proved. Teorem. A finite group representable as the product of two subgroups, each of which has a nilpotent subgroup of index at most $2$, is solvable. Bibliography: 19 titles.
@article{SM_1981_38_1_a3,
     author = {L. S. Kazarin},
     title = {On the product of two groups that are close to being nilpotent},
     journal = {Sbornik. Mathematics},
     pages = {47--59},
     year = {1981},
     volume = {38},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a3/}
}
TY  - JOUR
AU  - L. S. Kazarin
TI  - On the product of two groups that are close to being nilpotent
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 47
EP  - 59
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_1_a3/
LA  - en
ID  - SM_1981_38_1_a3
ER  - 
%0 Journal Article
%A L. S. Kazarin
%T On the product of two groups that are close to being nilpotent
%J Sbornik. Mathematics
%D 1981
%P 47-59
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_38_1_a3/
%G en
%F SM_1981_38_1_a3
L. S. Kazarin. On the product of two groups that are close to being nilpotent. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 47-59. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a3/

[1] V. M. Busarkin, Sporadicheskie gruppy (obzor), Krasnoyarsk–Novosibirsk, 1976 | Zbl

[2] A. S. Kondratev, “Konechnye prostye gruppy, silovskie $2$-podgruppy kotorykh imeyut tsiklicheskii kommutant”, Sib. matem. zh., 17:1 (1976), 85–90 | MR

[3] A. S. Kondratev, “O konechnykh gruppakh s silovskimi 2-podgruppami opredelennogo vida”, V Vsesoyuznyi simpozium po teorii grupp, Novosibirsk, 1976

[4] A. S. Kondratev, “Konechnye prostye gruppy s silovskimi $2$-podgruppami poryadka $2^7$”, Izv. AN SSSR, seriya matem., 41 (1977), 752–767 | MR

[5] Kourovskaya tetrad (nereshennye zadachi teorii grupp), izd. 5-e, Novosibirsk, 1976

[6] V. S. Monakhov, “O proizvedenii dvukh grupp s nilpotentnymi podgruppami indeksa, ne prevoskhodyaschego $2$”, Algebra i Logika, 16:1 (1977), 46–62 | MR | Zbl

[7] S. A. Chunikhin, “O suschestvovanii podgrupp u konechnoi gruppy”, Trudy seminara po teorii grupp, 1938, 106–125, GONTI, Moskva–Leningrad

[8] S. A. Chunikhin, L. A. Shemetkov, “Konechnye gruppy”, Itogi nauki. Algebra. Topologiya. Geometriya. 1969, VINITI, Moskva, 1971, 7–70 | MR | Zbl

[9] R. Baer, “Group elements of prime power index”, Trans. Amer. Math. Soc., 75:1 (1953), 20–47 | DOI | MR | Zbl

[10] P. X. Gallagher, “The conjugacy classes in a finite simple groups”, J. reine und angew. Math., 239/240 (1969), 363–365 | MR | Zbl

[11] C. W. Curtis, W. M. Kantor, G. M. Seitz, “The $2$-transitive permutation representations of the finite Chevalley groups”, Trans. Amer. Math. Soc., 218 (1976), 1–59 | DOI | MR | Zbl

[12] D. Gorenstein, Finite Groups, New York, 1968 | Zbl

[13] H. Hanes, K. Olson, W. R. Scott, “Products of simple groups”, J. Algebra, 36 (1975), 167–184 | DOI | MR | Zbl

[14] B. Huppert, Endliche Gruppen, I, Verlag, Berlin, 1967 | MR | Zbl

[15] N. Itô, “On the factorizations of the linear fractional groups $LF(2,p^n)$”, Acta Sci. Math. Szeged, 15 (1953), 79–84 | MR | Zbl

[16] P. J. Rowley, “The $\pi$-separability of certain factorizable groups”, Math. Z., 153:3 (1977), 219–228 | DOI | MR | Zbl

[17] G. M. Seitz, “Flag-transitive subgroups of Chevalley groups”, Ann. Math., 97:1 (1973), 27–56 | DOI | MR | Zbl

[18] F. G. Timmesfeld, “Groups with weakly closed $TJ$-subgroups”, Math. J., 143:3 (1975), 243–278 | MR | Zbl

[19] J. Walter, “The characterization of finite groups with abeliari Sylow $2$-subgroups”, Ann. Math., 89:3 (1969), 405–514 | DOI | MR | Zbl