On Fourier coefficients
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 11-29
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{\varphi_n\}$ be an orthonormal system of functions on the interval $[0,1]$, and let the function $f\in L^2(0, 1)$. We investigate the question of the convergence or divergence (depending on the smoothness of the function $f$) of series of the form
$$
\sum_{n = 1}^\infty|(f, \varphi_n)|^{\alpha_n},
$$
where $\alpha_n\uparrow2$ or $\alpha_n\to\alpha$ with $\alpha\in[0,2)$.
It is shown that in a certain sense, the assertions obtained are definitive for the Haar system.
Bibliography: 14 titles.
@article{SM_1981_38_1_a1,
author = {P. L. Ul'yanov},
title = {On {Fourier} coefficients},
journal = {Sbornik. Mathematics},
pages = {11--29},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a1/}
}
P. L. Ul'yanov. On Fourier coefficients. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 11-29. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a1/