On Fourier coefficients
Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 11-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\varphi_n\}$ be an orthonormal system of functions on the interval $[0,1]$, and let the function $f\in L^2(0, 1)$. We investigate the question of the convergence or divergence (depending on the smoothness of the function $f$) of series of the form $$ \sum_{n = 1}^\infty|(f, \varphi_n)|^{\alpha_n}, $$ where $\alpha_n\uparrow2$ or $\alpha_n\to\alpha$ with $\alpha\in[0,2)$. It is shown that in a certain sense, the assertions obtained are definitive for the Haar system. Bibliography: 14 titles.
@article{SM_1981_38_1_a1,
     author = {P. L. Ul'yanov},
     title = {On {Fourier} coefficients},
     journal = {Sbornik. Mathematics},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_38_1_a1/}
}
TY  - JOUR
AU  - P. L. Ul'yanov
TI  - On Fourier coefficients
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 11
EP  - 29
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_38_1_a1/
LA  - en
ID  - SM_1981_38_1_a1
ER  - 
%0 Journal Article
%A P. L. Ul'yanov
%T On Fourier coefficients
%J Sbornik. Mathematics
%D 1981
%P 11-29
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_38_1_a1/
%G en
%F SM_1981_38_1_a1
P. L. Ul'yanov. On Fourier coefficients. Sbornik. Mathematics, Tome 38 (1981) no. 1, pp. 11-29. http://geodesic.mathdoc.fr/item/SM_1981_38_1_a1/