Inverse theorems on generalized Pad\'e approximants
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 581-597
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the following theorem is proved.
Theorem. {\it For $m>0$ and all sufficiently large $n$, let the Padé approximants $R_{n,m}$ of the series
$$
f(z)=\sum_{\nu=0}^\infty A_\nu F_\nu(z),\qquad A_\nu=(f,F_\nu)=\int_{-1}^1f(x)F_\nu(x)\,d\alpha(x),
$$
have exactly $m$ finite poles, and let there exist a polynomial $\omega_m(z)=\prod_{j=1}^m(z-z_j)$ such that
$$
\varlimsup_{n\to\infty}\|q_{n,m}-\omega_m\|^{1/n}\leqslant\delta1.
$$
Then
$$
\rho_m(f)\geqslant\frac1\delta\max_{1\leqslant j\leqslant m}|\varphi(z_j)|
$$
and in the region $D_m(f)=D_{\rho_m}$ the function $f$ has exactly $m$ poles (at the points $z_1,\dots,z_m$).
}
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1980_37_4_a5,
     author = {S. P. Suetin},
     title = {Inverse theorems on generalized {Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {581--597},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/}
}
                      
                      
                    S. P. Suetin. Inverse theorems on generalized Pad\'e approximants. Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 581-597. http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/
