Inverse theorems on generalized Padé approximants
Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 581-597 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the following theorem is proved. Theorem. {\it For $m>0$ and all sufficiently large $n$, let the Padé approximants $R_{n,m}$ of the series $$ f(z)=\sum_{\nu=0}^\infty A_\nu F_\nu(z),\qquad A_\nu=(f,F_\nu)=\int_{-1}^1f(x)F_\nu(x)\,d\alpha(x), $$ have exactly $m$ finite poles, and let there exist a polynomial $\omega_m(z)=\prod_{j=1}^m(z-z_j)$ such that $$ \varlimsup_{n\to\infty}\|q_{n,m}-\omega_m\|^{1/n}\leqslant\delta<1. $$ Then $$ \rho_m(f)\geqslant\frac1\delta\max_{1\leqslant j\leqslant m}|\varphi(z_j)| $$ and in the region $D_m(f)=D_{\rho_m}$ the function $f$ has exactly $m$ poles (at the points $z_1,\dots,z_m$). } Bibliography: 8 titles.
@article{SM_1980_37_4_a5,
     author = {S. P. Suetin},
     title = {Inverse theorems on generalized {Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {581--597},
     year = {1980},
     volume = {37},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Inverse theorems on generalized Padé approximants
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 581
EP  - 597
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/
LA  - en
ID  - SM_1980_37_4_a5
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Inverse theorems on generalized Padé approximants
%J Sbornik. Mathematics
%D 1980
%P 581-597
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/
%G en
%F SM_1980_37_4_a5
S. P. Suetin. Inverse theorems on generalized Padé approximants. Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 581-597. http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/

[1] A. A. Gonchar, “O skhodimosti obobschennykh approksimatsii Pade meromorfnykh funktsii”, Matem. sb., 98 (140) (1975), 564–577 | Zbl

[2] R. K. Kovacheva, “O ratsionalnykh approksimatsiyakh meromorfnykh funktsii”, DAN SSSR, 241:3 (1978), 540–543 | MR | Zbl

[3] E. A. Rakhmanov, “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Matem. sb., 103(145) (1977), 237–252 | Zbl

[4] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, izd-vo “Nauka”, Moskva–Leningrad, 1964 | MR | Zbl

[5] S. P. Suetin, “O skhodimosti ratsionalnykh approksimatsii polinomialnykh razlozhenii v oblastyakh meromorfnosti zadannoi funktsii”, Matem. sb., 105(147) (1978), 413–430 | MR | Zbl

[6] J. Hadamard, “Essei sur l'etude des fonctions données par leur développement de Taylor”, J. Math. pures et appl., 4:8 (1892), 101–186 | Zbl

[7] E. B. Saff, “An extension of Montessus de Ballore's theorem on the convergence of interpolating rational functions”, J. Approximat. Theory., 6:1 (1972), 63–68 | DOI | MR

[8] J. L. Walsh, “The convergence of approximating rational functions of prescribed type”, Sovremennye problemy teorii analiticheskikh funktsii, izd-vo “Nauka”, Moskva, 1966, 304–308 | MR