Inverse theorems on generalized Pad\'e approximants
Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 581-597

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the following theorem is proved. Theorem. {\it For $m>0$ and all sufficiently large $n$, let the Padé approximants $R_{n,m}$ of the series $$ f(z)=\sum_{\nu=0}^\infty A_\nu F_\nu(z),\qquad A_\nu=(f,F_\nu)=\int_{-1}^1f(x)F_\nu(x)\,d\alpha(x), $$ have exactly $m$ finite poles, and let there exist a polynomial $\omega_m(z)=\prod_{j=1}^m(z-z_j)$ such that $$ \varlimsup_{n\to\infty}\|q_{n,m}-\omega_m\|^{1/n}\leqslant\delta1. $$ Then $$ \rho_m(f)\geqslant\frac1\delta\max_{1\leqslant j\leqslant m}|\varphi(z_j)| $$ and in the region $D_m(f)=D_{\rho_m}$ the function $f$ has exactly $m$ poles (at the points $z_1,\dots,z_m$). } Bibliography: 8 titles.
@article{SM_1980_37_4_a5,
     author = {S. P. Suetin},
     title = {Inverse theorems on generalized {Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {581--597},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Inverse theorems on generalized Pad\'e approximants
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 581
EP  - 597
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/
LA  - en
ID  - SM_1980_37_4_a5
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Inverse theorems on generalized Pad\'e approximants
%J Sbornik. Mathematics
%D 1980
%P 581-597
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/
%G en
%F SM_1980_37_4_a5
S. P. Suetin. Inverse theorems on generalized Pad\'e approximants. Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 581-597. http://geodesic.mathdoc.fr/item/SM_1980_37_4_a5/