A~general approach to the solution of the bounded control synthesis problem in a~controllability problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 535-557
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Consider a system of differential equations 
$$
\dot x=f(x,u),\qquad u\in M,
$$
where $x$ an $n$-dimensional vector, $u$ is an $r$-dimensional control, and $M$ is 
a subset of an $r$-dimensional space. A general approach to the solution of the following synthesis problem is proposed: construct a control $u=u(x)\in M$ such that the corresponding trajectory of the system $\dot x=f(x,u(x))$ starting at an arbitrary point $x_0$ terminates at the final time $T(x_0)$ at the point $x_1$.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1980_37_4_a3,
     author = {V. I. Korobov},
     title = {A~general approach to the solution of the bounded control synthesis problem in a~controllability problem},
     journal = {Sbornik. Mathematics},
     pages = {535--557},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_4_a3/}
}
                      
                      
                    TY - JOUR AU - V. I. Korobov TI - A~general approach to the solution of the bounded control synthesis problem in a~controllability problem JO - Sbornik. Mathematics PY - 1980 SP - 535 EP - 557 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1980_37_4_a3/ LA - en ID - SM_1980_37_4_a3 ER -
V. I. Korobov. A~general approach to the solution of the bounded control synthesis problem in a~controllability problem. Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 535-557. http://geodesic.mathdoc.fr/item/SM_1980_37_4_a3/
