A~characterization of some finite simple groups by centralizers of elements of order~3
Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 489-507
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article the following theorem is proved.
Theorem. {\it Let $G$ be a finite simple group containing an element $a$ of order $3$ such that $C_G(a)/\langle a\rangle\simeq\operatorname{PSL}(2,q)$, $q >3$.
If $C_G(x)$ is a $3$-group for any element $x\in G$ of order $3$ not conjugate with elements in $\langle a\rangle$, then $G$ is isomorphic with one of the groups $M_{23}$, $J_3$ or $\operatorname{PSU}(3,8^2)$}.
Bibliography: 18 titles.
@article{SM_1980_37_4_a1,
author = {B. K. Durakov},
title = {A~characterization of some finite simple groups by centralizers of elements of order~3},
journal = {Sbornik. Mathematics},
pages = {489--507},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_37_4_a1/}
}
B. K. Durakov. A~characterization of some finite simple groups by centralizers of elements of order~3. Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 489-507. http://geodesic.mathdoc.fr/item/SM_1980_37_4_a1/