A characterization of some finite simple groups by centralizers of elements of order 3
Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 489-507 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article the following theorem is proved. Theorem. {\it Let $G$ be a finite simple group containing an element $a$ of order $3$ such that $C_G(a)/\langle a\rangle\simeq\operatorname{PSL}(2,q)$, $q >3$. If $C_G(x)$ is a $3$-group for any element $x\in G$ of order $3$ not conjugate with elements in $\langle a\rangle$, then $G$ is isomorphic with one of the groups $M_{23}$, $J_3$ or $\operatorname{PSU}(3,8^2)$}. Bibliography: 18 titles.
@article{SM_1980_37_4_a1,
     author = {B. K. Durakov},
     title = {A~characterization of some finite simple groups by centralizers of elements of order~3},
     journal = {Sbornik. Mathematics},
     pages = {489--507},
     year = {1980},
     volume = {37},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_4_a1/}
}
TY  - JOUR
AU  - B. K. Durakov
TI  - A characterization of some finite simple groups by centralizers of elements of order 3
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 489
EP  - 507
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_4_a1/
LA  - en
ID  - SM_1980_37_4_a1
ER  - 
%0 Journal Article
%A B. K. Durakov
%T A characterization of some finite simple groups by centralizers of elements of order 3
%J Sbornik. Mathematics
%D 1980
%P 489-507
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1980_37_4_a1/
%G en
%F SM_1980_37_4_a1
B. K. Durakov. A characterization of some finite simple groups by centralizers of elements of order 3. Sbornik. Mathematics, Tome 37 (1980) no. 4, pp. 489-507. http://geodesic.mathdoc.fr/item/SM_1980_37_4_a1/

[1] D. Gorenstein, Finite groups, New-York, 1968 | MR | Zbl

[2] H. D. Podufalov, “O prostykh gruppakh, soderzhaschikh silno izolirovannye podgruppy”, Matem. sb., 100 (142) (1976), 447–454 | MR | Zbl

[3] N. D. Podufalov, “O prostykh konechnykh gruppakh s silno izolirovannoi podgruppoi, poryadok kotoroi delitsya na 3”, Sib. matem. zh. (to appear) | Zbl

[4] V. D. Mazurov, S. A. Syskin, “Kharakterizatsiya $L_3(2^n)$ silovskimi $2$-podgruppami”, Izv. AN SSSR, seriya matem., 38 (1974), 513–517 | MR | Zbl

[5] V. M. Busarkin, Yu. M. Gorchakov, Konechnye rasscheplyaemye gruppy, izd-vo “Nauka”, Moskva, 1968 | MR

[6] A. N. Fomin, “Konechnye $2$-gruppy, v kotorykh tsentralizator nekotoroi involyutsii imeet poryadok $8$”, XI Vsesoyuznyi algebraicheskii kollokvium, Rezyume soobschenii i dokladov, Kishinev, 1971, 95

[7] J. L. Alperin, R. Brauer, D. Gorenstein, “Finite groups with quasidihedral and wreathed Sylow $2$-subgroup”, Trans. Amer. Math. Soc., 151:1 (1970), 1–261 | DOI | MR | Zbl

[8] G. Higman, Odd characterization of finite simple groups, The University of Michigan, 1968

[9] W. Feit, J. G. Thomson, “Finite groups which contain a self-centralizing subgroup of order $3$”, Nagoya Math. J., 21 yr 1962, 185–197 | MR | Zbl

[10] J. H. Walter, “The characterization of finite groups with abelian Sylow $2$-subgroups”, Ann. Math., 89:3 (1969), 405–514 | DOI | MR | Zbl

[11] M. E. O'Nan, “Pome characterizations by centralizers of elements of order three”, Proc. Conf. on Finite Groups, Academic Press, 1976, 79–84 | MR

[12] P. Chabot, “Groups whose Sylow $2$-groups have cyclic commutator groups. III”, J. Algebra, 29:3 (1974), 455–458 | DOI | MR | Zbl

[13] S. D. Smith, A. P. Tyrer, “On finite groups with a sertain Sylow normalizer I; II”, J. Algebra, 26:2 (1973), 343–365 ; 366–367 | DOI | MR | Zbl | Zbl

[14] D. Gorenstein, J. H. Walter, “On finite groups with dihedral Sylow $2$-subgroups”, Illinois J. Math., 6:4 (1962), 553–593 | MR | Zbl

[15] D. Gorenstein, K. Harada, “A characterization of Janko's two new simple groups”, J. Fac. Sci. Univ. Tokyo, Sec. 1, 16:3 (1970), 331–406 | MR | Zbl

[16] W. B. Stewart, “Groups having strongly self-centralizing $3$-centralizers”, Proc. London. Math. Soc., 3:26 (1973), 653–680 | DOI | MR

[17] G. Glauberman, “Factorization in local subgroups of finite groups”, CBMS Regional Conference Series in Mathematics (January 31), no. 33, 1978 | MR

[18] D. M. Goldschmidt, “$2$-fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR | Zbl