@article{SM_1980_37_3_a6,
author = {Yu. B. Orochko},
title = {Smooth approximation of selfadjoint differential operators of divergence form with bounded measurable coefficients},
journal = {Sbornik. Mathematics},
pages = {389--401},
year = {1980},
volume = {37},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a6/}
}
TY - JOUR AU - Yu. B. Orochko TI - Smooth approximation of selfadjoint differential operators of divergence form with bounded measurable coefficients JO - Sbornik. Mathematics PY - 1980 SP - 389 EP - 401 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a6/ LA - en ID - SM_1980_37_3_a6 ER -
Yu. B. Orochko. Smooth approximation of selfadjoint differential operators of divergence form with bounded measurable coefficients. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 389-401. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a6/
[1] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo “Mir”, Moskva, 1973 | MR
[2] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd-vo “Nauka”, Moskva, 1964 | MR
[3] S. Spagnolo, “Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche”, Scuola norm. super. Pisa, Sci. fis. e mat., 22:4 (1968), 571–597 | MR
[4] Srinivasan Kesavan, “Homogéneisation et valeurs propres”, C. r. Acad. scient. Paris, Ser. A, 285:4 (1977), 229–232 | MR | Zbl
[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, izd-vo “Mir”, Moskva, 1972
[6] W. G. Faris, “Self-Adjoint Operators”, Lecture Notes in Math., 433, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl
[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. I. Funktsionalnyi analiz, izd-vo “Mir”, Moskva, 1977 | MR
[8] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl
[9] H. Danford i Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, Moskva, 1962
[10] T. Kato, “A second look at the essential self-adjointness of the Schrödinger Operators”, Physical Reality and Mathematical Description, O. Reidel Publishing Co., Dodrecht, 1974, 193–201 | MR
[11] B. Simon, R. Hoegh-Krohn, “Hypercontractive semigroups and two-dimensional selfcoupled Bose fields”, J. Funct. Anal., 9:2 (1972), 121–180 | DOI | MR | Zbl
[12] Yu. A. Semenov, “On the Lie-Trotter theorems in $L_p$-spaces”, Lett. Math. Phys., 1:2 (1977), 379–385 | DOI | MR | Zbl
[13] D. G. Aronson, “Bounds for the fundamental solutions of a parabolic equation”, Bull. Amer. Math. Soc., 3:6 (1967), 890–896 | DOI | MR
[14] Yu. Oročko, “Self-adjointness of the minimal Schrödinger operator with potential belonging to $L_{1,\loc}$”, Repts. Math. Phys., 15:2 (1979) | Zbl