Smooth approximation of selfadjoint differential operators of divergence form with bounded measurable coefficients
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 389-401 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that $S=-\sum_{j,k=1}^m\frac\partial{\partial x_j}a_{jk}(x)\frac\partial{\partial x_k}+1$ is a uniformly elliptic expression in $\mathbf R^m$, $m\geqslant1$, with real measurable coefficients, and $A$ is the selfadjoint operator associated with the sesquilinear form $a[f,g]$ in $L_2(\mathbf R^m)$ constructed from $S$; $a[f,g]$ is the limit of a sequence $a_n[f,g]$ ($n=1,2,\dots$) of analogous forms constructed from expressions of the type $S$, but with smooth coefficients. For forms in abstract Hilbert space we prove theorems that imply the strong convergence of $\Phi(A_n)$ ($A_n$ is the operator associated with $a_n$, and $\Phi(\lambda)$ is a bounded continuous function on the half-line $\lambda\geqslant0$) to $\Phi(A)$ as $n\to\infty$. Applications to the spectral theory of the operator $A$ are given. Bibliography: 14 titles.
@article{SM_1980_37_3_a6,
     author = {Yu. B. Orochko},
     title = {Smooth approximation of selfadjoint differential operators of divergence form with bounded measurable coefficients},
     journal = {Sbornik. Mathematics},
     pages = {389--401},
     year = {1980},
     volume = {37},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a6/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Smooth approximation of selfadjoint differential operators of divergence form with bounded measurable coefficients
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 389
EP  - 401
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a6/
LA  - en
ID  - SM_1980_37_3_a6
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Smooth approximation of selfadjoint differential operators of divergence form with bounded measurable coefficients
%J Sbornik. Mathematics
%D 1980
%P 389-401
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_37_3_a6/
%G en
%F SM_1980_37_3_a6
Yu. B. Orochko. Smooth approximation of selfadjoint differential operators of divergence form with bounded measurable coefficients. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 389-401. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a6/

[1] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo “Mir”, Moskva, 1973 | MR

[2] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd-vo “Nauka”, Moskva, 1964 | MR

[3] S. Spagnolo, “Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche”, Scuola norm. super. Pisa, Sci. fis. e mat., 22:4 (1968), 571–597 | MR

[4] Srinivasan Kesavan, “Homogéneisation et valeurs propres”, C. r. Acad. scient. Paris, Ser. A, 285:4 (1977), 229–232 | MR | Zbl

[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, izd-vo “Mir”, Moskva, 1972

[6] W. G. Faris, “Self-Adjoint Operators”, Lecture Notes in Math., 433, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. I. Funktsionalnyi analiz, izd-vo “Mir”, Moskva, 1977 | MR

[8] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl

[9] H. Danford i Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, Moskva, 1962

[10] T. Kato, “A second look at the essential self-adjointness of the Schrödinger Operators”, Physical Reality and Mathematical Description, O. Reidel Publishing Co., Dodrecht, 1974, 193–201 | MR

[11] B. Simon, R. Hoegh-Krohn, “Hypercontractive semigroups and two-dimensional selfcoupled Bose fields”, J. Funct. Anal., 9:2 (1972), 121–180 | DOI | MR | Zbl

[12] Yu. A. Semenov, “On the Lie-Trotter theorems in $L_p$-spaces”, Lett. Math. Phys., 1:2 (1977), 379–385 | DOI | MR | Zbl

[13] D. G. Aronson, “Bounds for the fundamental solutions of a parabolic equation”, Bull. Amer. Math. Soc., 3:6 (1967), 890–896 | DOI | MR

[14] Yu. Oročko, “Self-adjointness of the minimal Schrödinger operator with potential belonging to $L_{1,\loc}$”, Repts. Math. Phys., 15:2 (1979) | Zbl