A seven-term sequence in the Galois theory of schemes
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 367-380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any extension of schemes a seven-term exact sequence is constructed, coinciding in the affine case with the Chase–Rosenberg five-term sequence. At the end of the paper the seven-term sequence is applied to resolve some questions in class field theory. Bibligraphy: 17 titles.
@article{SM_1980_37_3_a4,
     author = {A. S. Merkur'ev},
     title = {A~seven-term sequence in the {Galois} theory of schemes},
     journal = {Sbornik. Mathematics},
     pages = {367--380},
     year = {1980},
     volume = {37},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a4/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
TI  - A seven-term sequence in the Galois theory of schemes
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 367
EP  - 380
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a4/
LA  - en
ID  - SM_1980_37_3_a4
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%T A seven-term sequence in the Galois theory of schemes
%J Sbornik. Mathematics
%D 1980
%P 367-380
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_37_3_a4/
%G en
%F SM_1980_37_3_a4
A. S. Merkur'ev. A seven-term sequence in the Galois theory of schemes. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 367-380. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a4/

[1] A. Grotendik, O nekotorykh voprosakh gomologicheskoi algebry, IL, Moskva, 1961

[2] M. Artin, Grothendieck Topologies, Harvard University, 1962 | Zbl

[3] D. Mamford, “Problemy modulei i ikh gruppy Pikara”, Matematika, 13:2 (1969), 26–63

[4] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, izd-vo “Nauka”, Moskva, 1972 | MR

[5] V. E. Voskresenskii, Algebraicheskie tory, izd-vo “Nauka”, Moskva, 1977 | MR | Zbl

[6] A. Grothendieck, “Le groupe de Brauer. I, II, III”, Dix Exposes sur la Cohomologie des Schemas, Masson, Amsterdam, North-Holland, Paris, 1968, 46–188 | MR

[7] A. S. Merkurev, “Semichlennaya posledovatelnost v teorii Galua kolets”, Zapiski nauch. seminarov LOMI, 75 (1978), 127–142 | MR

[8] S. U. Chase, D. K. Harrison, A. Rosenberg, “Galois theory and Galois cohomology or commutative rings”, Mem. Amer. Math. Soc., 52 (1965), 15–33 | MR | Zbl

[9] S. U. Chase, A. Rosenberg, “Amitsur cohomology and the Brauer group”, Mem. Amer. Math. Soc., 1965, no. 52, 34–79 | MR | Zbl

[10] M. Atislander, D. Buchsbaum, “On ramification theory in noetherian rings”, Amer. J. Math., 81 (1959), 749–765 | DOI | MR

[11] M. Auslander, O. Goldman, “The Brauer group of a commutative ring”, Trans. Amer. Math. Soc., 97 (1960), 367–409 | DOI | MR

[12] R. A. Morris, “On the Brauer group of $\mathbf Z$”, Pacific J. Math., 39:3 (1971), 619–630 | MR | Zbl

[13] K. Mandelberg, “Amitsur cohomology for certain extentions of rings of algebraic integers”, Pacific J. Math., 59:1 (1975), 161–197 | MR | Zbl

[14] I. Reiner, Maximal orders, Academic Press, London, 1975 | MR

[15] B. Mazur, “Notes on etale cohomology of number fields”, Ann. scient. Ecole Norm. Super, 4 serie, 6 (1973), 521–556 | MR

[16] Dzh. Milnor, Vvedenie v algebraicheskuyu $K$-teoriyu, izd-vo "Mir, Moskva, 1974 | MR

[17] Dzh. Kassels, A. Frelikh, Algebraicheskaya teoriya chisel, izd-vo “Mir”, Moskva, 1969