On the ramification theory of two-dimensional local fields
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 349-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Filtrations are defined on the group $K_2^\operatorname{top}$ of a two-dimensional local field of characteristic $p>0$ and on the Galois group of its $p$-extension. Results are proved which are analogous to the one-dimensional case (Proposition 2.4, Theorem 2.1). It is proved that, for an Artin–Schreier extension $L/K$ the reciprocity map carries the filtration on the group $ K_2^{\operatorname{top}}(K)$ to the filtration on the group $ \operatorname{Gal}(L/K)$, with the Herbrand numbering. An example is given which shows that this is not true for an arbitrary $p$-extension. Bibliography: 7 titles.
@article{SM_1980_37_3_a3,
     author = {V. G. Lomadze},
     title = {On the ramification theory of two-dimensional local fields},
     journal = {Sbornik. Mathematics},
     pages = {349--365},
     year = {1980},
     volume = {37},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a3/}
}
TY  - JOUR
AU  - V. G. Lomadze
TI  - On the ramification theory of two-dimensional local fields
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 349
EP  - 365
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a3/
LA  - en
ID  - SM_1980_37_3_a3
ER  - 
%0 Journal Article
%A V. G. Lomadze
%T On the ramification theory of two-dimensional local fields
%J Sbornik. Mathematics
%D 1980
%P 349-365
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_37_3_a3/
%G en
%F SM_1980_37_3_a3
V. G. Lomadze. On the ramification theory of two-dimensional local fields. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 349-365. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a3/

[1] A. N. Parshin, “Polya klassov i algebraicheskaya $K$-teoriya”, Uspekhi matem. nauk, XXX:1(181) (1975), 253–254

[2] A. N. Parshin, “Abelevy nakrytiya arifmeticheskikh skhem”, DAN SSSR, 243:4 (1978), 855–858 | MR | Zbl

[3] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, izd-vo “Nauka”, Moskva, 1972 | MR

[4] A. Veil, Osnovy teorii chisel, izd-vo “Mir”, Moskva, 1972 | MR

[5] Algebraicheskaya teoriya chisel, sbornik statei pod redaktsiei Dzh. Kasselsa i A. Frelikha, izd-vo “Mir”, Moskva, 1969 | MR

[6] A. N. Parshin, “K arifmetike dvumernykh skhem. I. Raspredeleniya i vychety”, Izv. AN SSSR, seriya matem., 40 (1976), 736–773 | Zbl

[7] J. P. Serre, “Sur les corps locaux à corps résiduel algébriquement clos”, Bull. Soc. math. France, 89 (1961), 105–154 | MR | Zbl