On the ramification theory of two-dimensional local fields
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 349-365
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Filtrations are defined on the group $K_2^\operatorname{top}$ of a two-dimensional local field of characteristic $p>0$ and on the Galois group of its $p$-extension. Results are proved which are analogous to the one-dimensional case (Proposition 2.4, Theorem 2.1).
It is proved that, for an Artin–Schreier extension $L/K$ the reciprocity map carries the filtration on the group $ K_2^{\operatorname{top}}(K)$ to the filtration on the group 
$ \operatorname{Gal}(L/K)$, with the Herbrand numbering. An example is given which shows that this is not true for an arbitrary $p$-extension.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1980_37_3_a3,
     author = {V. G. Lomadze},
     title = {On the ramification theory of two-dimensional local fields},
     journal = {Sbornik. Mathematics},
     pages = {349--365},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a3/}
}
                      
                      
                    V. G. Lomadze. On the ramification theory of two-dimensional local fields. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 349-365. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a3/
