Generalized Pad\'e approximants and meromorphic continuation of functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 337-348
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this work, a converse theorem relating to interpolatory sequences of rational functions with a fixed number of free poles is proved. This theorem gives a measure of the domain of $m$-meromorphy of the given function in terms of the speed of convergence of the free poles of its rational approximants.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1980_37_3_a2,
     author = {R. K. Kovacheva},
     title = {Generalized {Pad\'e} approximants and meromorphic continuation of functions},
     journal = {Sbornik. Mathematics},
     pages = {337--348},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/}
}
                      
                      
                    R. K. Kovacheva. Generalized Pad\'e approximants and meromorphic continuation of functions. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/
