Generalized Padé approximants and meromorphic continuation of functions
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 337-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, a converse theorem relating to interpolatory sequences of rational functions with a fixed number of free poles is proved. This theorem gives a measure of the domain of $m$-meromorphy of the given function in terms of the speed of convergence of the free poles of its rational approximants. Bibliography: 8 titles.
@article{SM_1980_37_3_a2,
     author = {R. K. Kovacheva},
     title = {Generalized {Pad\'e} approximants and meromorphic continuation of functions},
     journal = {Sbornik. Mathematics},
     pages = {337--348},
     year = {1980},
     volume = {37},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/}
}
TY  - JOUR
AU  - R. K. Kovacheva
TI  - Generalized Padé approximants and meromorphic continuation of functions
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 337
EP  - 348
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/
LA  - en
ID  - SM_1980_37_3_a2
ER  - 
%0 Journal Article
%A R. K. Kovacheva
%T Generalized Padé approximants and meromorphic continuation of functions
%J Sbornik. Mathematics
%D 1980
%P 337-348
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/
%G en
%F SM_1980_37_3_a2
R. K. Kovacheva. Generalized Padé approximants and meromorphic continuation of functions. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/

[1] Dzh. A. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi ploskosti, IL, Moskva, 1961

[2] T. Bagby, “On interpolating by rational functions”, Duke Math. J., 36:1 (1969), 95–104 | DOI | MR | Zbl

[3] A. A. Gonchar, “O skhodimosti obobschennykh approksimatsii Pade meromorfnykh funktsii”, Matem. sb., 98(104) (1975), 564–577 | Zbl

[4] J. Hadamard, “Essai sur l'etude des fonctions donnees par leur developpement de Taylor”, J. Math., 418 (1892), 101–186

[5] R. de Montessus de Ballore, “Sur le fractions continues algebriques”, Bull. Soc. Math. France, 301 (1902), 28–36 | MR

[6] E. B. Saff, “An extension of Montessus de Ballores theorem on the convergence of interpolating rational functions”, J. Approx. Theory, 6 (1972), 63–68 | DOI | MR

[7] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97(139) (1975), 607–629 | Zbl

[8] R. K. Kovacheva, “O kriterii $m$-meromorfnosti”, Materialy Mezhdunarodnoi konferentsii po konstruktivnoi teorii funktsii (Blagoevgrad, Bolgariya, 31.V.-4.VI.1977 g.)