Generalized Pad\'e approximants and meromorphic continuation of functions
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 337-348

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a converse theorem relating to interpolatory sequences of rational functions with a fixed number of free poles is proved. This theorem gives a measure of the domain of $m$-meromorphy of the given function in terms of the speed of convergence of the free poles of its rational approximants. Bibliography: 8 titles.
@article{SM_1980_37_3_a2,
     author = {R. K. Kovacheva},
     title = {Generalized {Pad\'e} approximants and meromorphic continuation of functions},
     journal = {Sbornik. Mathematics},
     pages = {337--348},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/}
}
TY  - JOUR
AU  - R. K. Kovacheva
TI  - Generalized Pad\'e approximants and meromorphic continuation of functions
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 337
EP  - 348
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/
LA  - en
ID  - SM_1980_37_3_a2
ER  - 
%0 Journal Article
%A R. K. Kovacheva
%T Generalized Pad\'e approximants and meromorphic continuation of functions
%J Sbornik. Mathematics
%D 1980
%P 337-348
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/
%G en
%F SM_1980_37_3_a2
R. K. Kovacheva. Generalized Pad\'e approximants and meromorphic continuation of functions. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a2/