Two problems in the Galois theory of differential fields for the field of formal power series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 327-335
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The direct problem in the Galois theory of differential fields for a homogeneous linear differential equation of the second order over the field $\mathbf C((X))$ is solved, and a classification of $SL(2)$-extensions and a description of the Picard–Vessiot extensions of this field are given.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1980_37_3_a1,
     author = {N. V. Grigorenko},
     title = {Two problems in the {Galois} theory of differential fields for the field of formal power series},
     journal = {Sbornik. Mathematics},
     pages = {327--335},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a1/}
}
                      
                      
                    TY - JOUR AU - N. V. Grigorenko TI - Two problems in the Galois theory of differential fields for the field of formal power series JO - Sbornik. Mathematics PY - 1980 SP - 327 EP - 335 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a1/ LA - en ID - SM_1980_37_3_a1 ER -
N. V. Grigorenko. Two problems in the Galois theory of differential fields for the field of formal power series. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 327-335. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a1/
