Two problems in the Galois theory of differential fields for the field of formal power series
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 327-335
Cet article a éte moissonné depuis la source Math-Net.Ru
The direct problem in the Galois theory of differential fields for a homogeneous linear differential equation of the second order over the field $\mathbf C((X))$ is solved, and a classification of $SL(2)$-extensions and a description of the Picard–Vessiot extensions of this field are given. Bibliography: 5 titles.
@article{SM_1980_37_3_a1,
author = {N. V. Grigorenko},
title = {Two problems in the {Galois} theory of differential fields for the field of formal power series},
journal = {Sbornik. Mathematics},
pages = {327--335},
year = {1980},
volume = {37},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a1/}
}
N. V. Grigorenko. Two problems in the Galois theory of differential fields for the field of formal power series. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 327-335. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a1/
[1] N. V. Grigorenko, “O $G$-primitivnykh rasshireniyakh differentsialnykh polei”, Matem. zametki, 23:3 (1978), 425–434 | MR | Zbl
[2] Zh.-P. Serr, Algebraicheskie gruppy i polya klassov, izd-vo “Mir”, Moskva, 1968
[3] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York, 1973 | MR | Zbl
[4] J. Kovacic, “The invers problem in the Galois theory of differential fields”, Ann. Math., 89 (1969), 583–608 | DOI | MR | Zbl
[5] F. I. Cope, “Formal solutions of irregular linear differential equations”, Amer. J. Math., 58 (1936), 130–140 | DOI | MR | Zbl