Functions of bounded generalized second variation
Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 261-294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper introduces the classes $H_{\overline\Phi(n)}^{(2)}$ and $H_\Phi^{(2)}(n)$ of functions of $n$ variables. These classes, for $n=1$, are more general than the class of functions of bounded second variation introduced by F. I. Harsiladze, and in the case $n\geqslant2$ they contain the classes of functions of bounded generalized variation introduced by B. I. Golubov. Certain properties of functions of these classes are studied. A theorem on convergence and summability of Fourier series of functions from these classes is proved, and it is shown to be optimal in a certain sense. Bibliography: 27 titles.
@article{SM_1980_37_2_a6,
     author = {T. I. Akhobadze},
     title = {Functions of bounded generalized second variation},
     journal = {Sbornik. Mathematics},
     pages = {261--294},
     year = {1980},
     volume = {37},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_2_a6/}
}
TY  - JOUR
AU  - T. I. Akhobadze
TI  - Functions of bounded generalized second variation
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 261
EP  - 294
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_2_a6/
LA  - en
ID  - SM_1980_37_2_a6
ER  - 
%0 Journal Article
%A T. I. Akhobadze
%T Functions of bounded generalized second variation
%J Sbornik. Mathematics
%D 1980
%P 261-294
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1980_37_2_a6/
%G en
%F SM_1980_37_2_a6
T. I. Akhobadze. Functions of bounded generalized second variation. Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 261-294. http://geodesic.mathdoc.fr/item/SM_1980_37_2_a6/

[1] A. Zigmund, Trigonometricheskie ryady, t. 1, izd-vo “Mir”, Moskva, 1965 | MR

[2] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, Massachusetts J. Math., 3 (1924), 72–94 | Zbl

[3] J. Marcinkiewicz, “On a class of functions and thier Fourier series”, Compt. Rend. Soc. Sci. Varsovie, 26 (1934), 71–77 | Zbl

[4] L. C. Young, “General inequalities for Stiltjes integrals and the convergence of Fourier series”, Math. Ann., 115 (1938), 581–612 | DOI | MR | Zbl

[5] R. Salem, Essais sur les series trigonometriques, Actualité sci. et Industr., 862, Paris, 1940 | MR | Zbl

[6] 3. A. Chanturiya, “O ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 100(142) (1976), 534–554 | Zbl

[7] A. Baernstein, “On the Fourier series of functions of bounded $\Phi$-variation”, Studia Math., 42:3 (1972), 243–248 | MR | Zbl

[8] K. I. Oskolkov, “Obobschennaya variatsiya, indikatrisa Banakha i ravnomernaya skhodimost ryadov Fure”, Matem. zametki, 12:3 (1972), 313–324 | MR | Zbl

[9] B. I. Golubov, “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov i integralov Fure ot funktsii ogranichennoi obobschennoi variatsii”, Matem. sb., 89(131) (1972), 630–653 | MR | Zbl

[10] T. I. Akhobadze, “O summiruemosti ryadov Fure”, Soobsch. AN Gruz. SSR, 72:2 (1973), 273–276 | Zbl

[11] T. I. Akhobadze, O skhodimosti i summiruemosti prostykh i kratnykh ryadov Fure, Kandidatskaya dissertatsiya, Tbilisi, 1973

[12] T. I. Akhobadze, “O skhodimosti chezarovskikh srednikh otritsatelnogo poryadka funktsii ogranichennoi obobschennoi vtoroi variatsii”, Matem. zametki, 20:5 (1976), 631–644 | MR | Zbl

[13] G. H. Hardy, “On double Fourier series and especially those which represent the double zeta-function with reale and incommensurable parameters”, Quart. J. Math., 37:l (1906), 53–79

[14] L. V. Zhizhiashvili, Sopryazhennye funktsii i trigonometricheskie ryady, izd-vo TGU, Tbilisi, 1969 | MR

[15] B. I. Golubov, “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi obobschennoi variatsii. I”, Sib. matem. zh., 15:2 (1974), 262–291 | MR | Zbl

[16] B. I. Golubov, “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi obobschennoi variatsii. II”, Sib. matem. zh., 15:4 (1974), 767–783 | MR | Zbl

[17] B. I. Golubov, O skhodimosti summiruemosti kratnykh ryadov i integralov Fure, Doktorskaya dissertatsiya, Tbilisi, 1975 | MR

[18] F. I. Kharshiladze, “O funktsiyakh s ogranichennym vtorym izmeneniem”, DAN SSSR, 79:2 (1951), 201–204

[19] F. I. Kharshiladze, “Funktsii s ogranichennym vtorym izmeneniem”, Trudy Tbil. matem. in-ta, 20 (1954), 145–156

[20] F. I. Kharshiladze, “Nekotorye svoistva funktsii s ogranichennym vtorym izmeneniem”, Trudy Tbil. gos. un-ta, 64 (1954), 93–105

[21] S. K. Khavpachev, Funktsii s ogranichennym $m$-izmeneniem, Kandidatskaya dissertatsiya, Nalchik, 1966

[22] A. A. Kelzon, “O funktsiyakh ogranichennoi $(m,p)$-variatsii”, Soobsch. AN Gruz. SSR, 78:3 (1975), 533–536 | MR

[23] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR

[24] L. V. Zhizhiashvili, “O nekotorykh voprosakh iz teorii prostykh i kratnykh trigonometricheskikh i ortogonalnykh ryadov”, Uspekhi matem. nauk, XXVIII:2(170) (1973), 65–119

[25] A. Zygmund, “Smooth functions”, Duke Math. J., 12:1 (1945), 47–76 | DOI | MR | Zbl

[26] E. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, Moskva, 1953

[27] J. Musielak and W. Orlicz, “On generalized variations”, Studia Math., 18 (1959), 11–41 | MR | Zbl