On nontrivial solutions of the homogeneous Abel problem
Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 227-244

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ denote the set of all entire functions $F(z)$ of finite exponential type with the following growth characteristic along the imaginary axis: $$ F(iy)=O(|y|^Ne^{\frac\pi2|y|}),\qquad y\to\infty\quad(N\geqslant0). $$ It is shown in this paper that the general solution of the symmetric Abel interpolation problem $$ F^{(n)}(\pm n)=0,\qquad n=0,1,2,\dots, $$ in the class $K$ is of the form $F(z)=C\sin(\pi z/2)$, where $C$ is an arbitrary constant. Bibliography: 10 titles.
@article{SM_1980_37_2_a4,
     author = {Yu. A. Kaz'min},
     title = {On nontrivial solutions of the homogeneous {Abel} problem},
     journal = {Sbornik. Mathematics},
     pages = {227--244},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_2_a4/}
}
TY  - JOUR
AU  - Yu. A. Kaz'min
TI  - On nontrivial solutions of the homogeneous Abel problem
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 227
EP  - 244
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_2_a4/
LA  - en
ID  - SM_1980_37_2_a4
ER  - 
%0 Journal Article
%A Yu. A. Kaz'min
%T On nontrivial solutions of the homogeneous Abel problem
%J Sbornik. Mathematics
%D 1980
%P 227-244
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_37_2_a4/
%G en
%F SM_1980_37_2_a4
Yu. A. Kaz'min. On nontrivial solutions of the homogeneous Abel problem. Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 227-244. http://geodesic.mathdoc.fr/item/SM_1980_37_2_a4/