On nontrivial solutions of the homogeneous Abel problem
Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 227-244
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ denote the set of all entire functions $F(z)$ of finite exponential type with the following growth characteristic along the imaginary axis:
$$
F(iy)=O(|y|^Ne^{\frac\pi2|y|}),\qquad y\to\infty\quad(N\geqslant0).
$$
It is shown in this paper that the general solution of the symmetric Abel interpolation problem
$$
F^{(n)}(\pm n)=0,\qquad n=0,1,2,\dots,
$$
in the class $K$ is of the form $F(z)=C\sin(\pi z/2)$, where $C$ is an arbitrary constant.
Bibliography: 10 titles.
@article{SM_1980_37_2_a4,
author = {Yu. A. Kaz'min},
title = {On nontrivial solutions of the homogeneous {Abel} problem},
journal = {Sbornik. Mathematics},
pages = {227--244},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_37_2_a4/}
}
Yu. A. Kaz'min. On nontrivial solutions of the homogeneous Abel problem. Sbornik. Mathematics, Tome 37 (1980) no. 2, pp. 227-244. http://geodesic.mathdoc.fr/item/SM_1980_37_2_a4/